Compare time series predictions of COVID-19 deaths

23 Bewertungen
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Preprocess time series data for various machine learning models

Visualize time series data

Compare the time series predictions of 4 machine learning models

Clock2 hours
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 2-hour long project-based course, you will learn how to preprocess time series data, visualize time series data and compare the time series predictions of 4 machine learning models.You will create time series analysis models in the python programming language to predict the daily deaths due to SARS-CoV-19, or COVID-19. You will create and train the following models: SARIMAX, Prophet, neural networks and XGBOOST. You will visualize data using the matplotlib library, and extract features from a time series data set, perform data splitting and normalization. To successfully complete this project, learners should have prior Python programming experience, a basic understanding of machine learning, and a familiarity of the Pandas library. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Time Series Forecasting
  • Machine Learning
  • Feature Engineering
  • Python Programming
  • Time Series Models

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Preprocess the data using pandas to be ready for machine learning, and visualize the data using matplotlib

  2. Create a SARIMAX model, optimize the model hyperparameters, use the model for forecasting future COVID-19 deaths and visualize the results

  3. Create a prophet model and use the model for forecasting future COVID-19 deaths and visualize the results

  4. Create a function that extracts features for training the XGBOOST and a feedforward neural network models

  5. Split time series feature dataset into training and test datasets and perform data normalization

  6. Train an XGBOOST model and a feedforward neural network model, and finally compare the predictions of all the models covered in the project

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.



Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.