Compare time series predictions of COVID-19 deaths

4.3
Sterne
23 Bewertungen
von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Preprocess time series data for various machine learning models

Visualize time series data

Compare the time series predictions of 4 machine learning models

Clock2 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 2-hour long project-based course, you will learn how to preprocess time series data, visualize time series data and compare the time series predictions of 4 machine learning models.You will create time series analysis models in the python programming language to predict the daily deaths due to SARS-CoV-19, or COVID-19. You will create and train the following models: SARIMAX, Prophet, neural networks and XGBOOST. You will visualize data using the matplotlib library, and extract features from a time series data set, perform data splitting and normalization. To successfully complete this project, learners should have prior Python programming experience, a basic understanding of machine learning, and a familiarity of the Pandas library. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Time Series Forecasting
  • Machine Learning
  • Feature Engineering
  • Python Programming
  • Time Series Models

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Preprocess the data using pandas to be ready for machine learning, and visualize the data using matplotlib

  2. Create a SARIMAX model, optimize the model hyperparameters, use the model for forecasting future COVID-19 deaths and visualize the results

  3. Create a prophet model and use the model for forecasting future COVID-19 deaths and visualize the results

  4. Create a function that extracts features for training the XGBOOST and a feedforward neural network models

  5. Split time series feature dataset into training and test datasets and perform data normalization

  6. Train an XGBOOST model and a feedforward neural network model, and finally compare the predictions of all the models covered in the project

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von COMPARE TIME SERIES PREDICTIONS OF COVID-19 DEATHS

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.