Chevron Left
Zurück zu Logistic Regression with Python and Numpy

Bewertung und Feedback des Lernenden für Logistic Regression with Python and Numpy von Coursera Project Network

4.5
Sterne
146 Bewertungen

Über den Kurs

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed....

Top-Bewertungen

DP

8. Apr. 2020

Want to do a project in Logistic Regression. You are at the right spot Don't delay and take the course.

MT

9. März 2020

Easy to follow along, each step was made very clear, and I understood the justification behind steps.

Filtern nach:

1 - 24 von 24 Bewertungen für Logistic Regression with Python and Numpy

von Shiva S T

9. März 2020

von Haofei M

4. März 2020

von Duddela S P

9. Apr. 2020

von Megan T

10. März 2020

von Raj K

29. Apr. 2020

von Pranjal M

14. Juni 2020

von Thomas H

12. Nov. 2021

von Ashwin K

2. Sep. 2020

von Gangone R

2. Juli 2020

von JONNALA S R

7. Mai 2020

von Nandivada P E

15. Juni 2020

von Doss D

23. Juni 2020

von Saikat K

7. Sep. 2020

von Lahcene O M

3. März 2020

von tale p

27. Juni 2020

von p s

24. Juni 2020

von ANURAG P

5. Juni 2020

von Munna K

27. Sep. 2020

von Chow K M

4. Okt. 2021

von Manzil-e A K

20. Juli 2020

von Rosario P

23. Sep. 2020

von Abdul Q

30. Apr. 2020

von Weerachai Y

8. Juli 2020

von Александр П

9. März 2020