Deep Learning with PyTorch : Generative Adversarial Network

von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Create Discriminator and Generator Network

Create a training loop to train GAN model

Clock2 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this two hour project-based course, you will implement Deep Convolutional Generative Adversarial Network using PyTorch to generate handwritten digits. You will create a generator that will learn to generate images that look real and a discriminator that will learn to tell real images apart from fakes. This hands-on-project will provide you the detail information on how to implement such network and train to generate handwritten digit images. In order to be successful in this project, you will need to have a theoretical understanding on convolutional neural network and optimization algorithm like Adam or gradient descent. This project will focus more on the practical aspect of DCGAN and less on theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Convolutional Neural Network
  • Python Programming
  • pytorch
  • Genrative Adversarial Network

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Setup Google Runtime

  2. Configurations

  3. Load MNIST Handwritten Dataset

  4. Load Dataset into Batches

  5. Create Discriminator Network

  6. Create Generator Network

  7. Create Loss Function and Load Optimizers

  8. Training GAN

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.