Deploying a Pytorch Computer Vision Model API to Heroku

Build a PyTorch computer vision model REST API with Flask.
Deploy PyTorch computer vision model REST API to Heroku.
Build a PyTorch computer vision model REST API with Flask.
Deploy PyTorch computer vision model REST API to Heroku.
Welcome to the “Deploying a Pytorch Computer Vision Model API to Heroku” guided project. Computer vision is one of the prominent fields of AI with numerous applications in the real world including self-driving cars, image recognition, and object tracking, among others. The ability to make models available for real-world use is an essential skill anyone interested in AI engineering should have especially for computer vision and this is why this project exists. In this project, we will deploy a Flask REST API using one of Pytorch's pre-trained computer vision image classification models. This API will be able to receive an image, inference the pre-trained model, and return its predicted classification. This project is an intermediate python project for anyone interested in learning about how to productionize Pytorch computer vision models in the real world via a REST API on Heroku. It requires preliminary knowledge on how to build and train PyTorch models (as we will not be building or training models), how to utilize Git and a fundamental understanding of REST APIs. Learners would also need a Heroku account and some familiarity with the Python Flask module and the Postman API Platform. At the end of this project, learners will have a publicly available API they can use to demonstrate their knowledge in deploying computer vision models.
Machine Learning
Python Programming
pytorch
Machine Learning Deployment
Computer Vision
In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:
Import all the necessary libraries.
Build a PyTorch computer vision model REST API with Flask.
Build a simple flask web server.
Test out PyTorch computer vision model REST API localhost end point.
Deploy PyTorch computer vision model REST API to Heroku
Test out PyTorch computer vision model REST API Heroku end point.
Capstone Practice
Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich
Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.
Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.
Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.
Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.
Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.
Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.
Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.
Für angeleitete Projekte ist kein Auditing verfügbar.
Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.
Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.
Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.