Dimensionality Reduction using an Autoencoder in Python

4.6
Sterne
82 Bewertungen
von
Coursera Project Network
2,760 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

How to generate and preprocess high-dimensional data

How an autoencoder works, and how to train one in scikit-learn

How to extract the encoder portion from a trained model, and reduce dimensionality of your input data

Clock60 minutes
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project, you will learn how to generate your own high-dimensional dummy dataset. You will then learn how to preprocess it effectively before training a baseline PCA model. You will learn the theory behind the autoencoder, and how to train one in scikit-learn. You will also learn how to extract the encoder portion of it to reduce dimensionality of your input data. In the course of this project, you will also be exposed to some basic clustering strength metrics. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Dimensionality ReductionArtificial Neural NetworkMachine Learningclustering

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. An introduction to the problem and a summary of needed imports

  2. Dataset creation and preprocessing

  3. Using PCA as a baseline for model performance

  4. Theory behind the autoencoder architecture and how to train a model in scikit-learn

  5. Reducing dimensionality using the encoder half of an autoencoder within scikit-learn

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Dozent

Bewertungen

Top-Bewertungen von DIMENSIONALITY REDUCTION USING AN AUTOENCODER IN PYTHON

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..