Predict Employee Turnover with scikit-learn

4.4
Sterne
242 Bewertungen
von
Coursera Project Network
7.628 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Apply decision trees and random forests with scikit-learn to classification problems

Interpret decision trees and random forest models using feature importances

Tune model hyperparamters to improve classification accuracy

Create interactive, GUI components in Jupyter notebooks using widgets

Clock2 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

Welcome to this project-based course on Predicting Employee Turnover with Decision Trees and Random Forests using scikit-learn. In this project, you will use Python and scikit-learn to grow decision trees and random forests, and apply them to an important business problem. Additionally, you will learn to interpret decision trees and random forest models using feature importance plots. Leverage Jupyter widgets to build interactive controls, you can change the parameters of the models on the fly with graphical controls, and see the results in real time! This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed.

Kompetenzen, die Sie erwerben werden

  • Decision Tree
  • Machine Learning
  • Random Forest
  • classification
  • Scikit-Learn

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Introduction and Importing Libraries

  2. Exploratory Data Analysis

  3. Encode Categorical Features

  4. Visualize Class Imbalance

  5. Create Training and Test Sets

  6. Build a Decision Tree Classifier with Interactive Controls

  7. Build a Decision Tree Classifier with Interactive Controls (Continued)

  8. Build a Random Forest Classifier with Interactive Controls

  9. Feature Importance and Evaluation Metrics

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von PREDICT EMPLOYEE TURNOVER WITH SCIKIT-LEARN

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.