Emotion AI: Facial Key-points Detection

4.6
Sterne
143 Bewertungen
von
Coursera Project Network
6.808 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Understand the theory and intuition behind Deep Neural Networks, and Residual Neural Networks, and Convolutional Neural Networks (CNNs).

Build and train a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock3 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks. - Import Key libraries, dataset and visualize images. - Perform data augmentation to increase the size of the dataset and improve model generalization capability. - Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

Kompetenzen, die Sie erwerben werden

  • Deep Learning
  • Machine Learning
  • Python Programming
  • Artificial Intelligence(AI)
  • Computer Vision

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Task 1: Project Overview/Understand the problem statement and business case

  2. Task 2: Import Libraries/datasets and perform preliminary data processing

  3. Task 3: Perform Image Visualization

  4. Task 4: Perform Image Augmentation

  5. Task 5: Prepare the data for deep learning model training (Normalization/reshaping)

  6. Task 6: Understand the theory and intuition behind Deep Neural Networks and CNNs.

  7. Task 7: Build Deep Residual Neural Network Model

  8. Task 8: Compile and train deep learning model

  9. Task 9: Assess the Performance of the Trained Model

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Dozent

Bewertungen

Top-Bewertungen von EMOTION AI: FACIAL KEY-POINTS DETECTION

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.