Image Super Resolution Using Autoencoders in Keras

4.4
Sterne
289 Bewertungen
von
Coursera Project Network
6,923 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Understand what autoencoders are and why they are used

Design and train an autoencoder to increase the resolution of images with Keras

Clock1.5
AdvancedFortgeschritten
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

Welcome to this 1.5 hours long hands-on project on Image Super Resolution using Autoencoders in Keras. In this project, you’re going to learn what an autoencoder is, use Keras with Tensorflow as its backend to train your own autoencoder, and use this deep learning powered autoencoder to significantly enhance the quality of images. That is, our neural network will create high-resolution images from low-res source images. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Data ScienceDeep LearningMachine LearningComputer Visionkeras

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Project Overview and Import Libraries

  2. What are Autoencoders?

  3. Build the Encoder

  4. Build the Decoder to Complete the Network

  5. Create Dataset and Specify Training Routine

  6. Load the Dataset and Pre-trained Model

  7. Model Predictions and Visualizing the Results

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von IMAGE SUPER RESOLUTION USING AUTOENCODERS IN KERAS

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..