Fake Instagram Profile Detector

4.4
Sterne
25 Bewertungen
von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Understand the theory and intuition behind Deep Neural Networks.

Build and train a deep learning model using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained model and ensure its generalization using various Key performance indicators.

Clock1.5 hours
BeginnerAnfänger
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this hands-on project, we will build and train a simple artificial neural network model to detect spam/fake Instagram accounts. Fake and spam accounts are a major problem in social media. Many social media influencers use fake Instagram accounts to create an illusion of having so many social media followers. Fake accounts can be used to impersonate or catfish other people and be used to sell fake services/products. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind Deep Neural Networks - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn. - Standardize the data and split them into train and test datasets. - Build a deep learning model using Keras with Tensorflow 2.0 as a back-end. - Assess the performance of the model and ensure its generalization using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Deep Learning
  • Machine Learning
  • Python Programming
  • classification
  • Artificial Intelligence(AI)

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Task 1: Understand the problem statement and business case

  2. Task 2: Import Datasets and Libraries

  3. Task 3: Exploratory Data Analysis

  4. Task 4: Perform Data Visualization

  5. Task 5: Prepare the data to feed the model

  6. Task 6: Understand the theory and intuition behind Artificial Neural Networks

  7. Task 7: Build a simple Multi Layer Neural Network

  8. Task 8: Compile and train a Deep Learning Model

  9. Task 9: Assess the performance of the trained model

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.