Chevron Left
Zurück zu Interpretable machine learning applications: Part 5

Bewertung und Feedback des Lernenden für Interpretable machine learning applications: Part 5 von Coursera Project Network

Über den Kurs

You will be able to use the Aequitas Tool as a tool to measure and detect bias in the outcome of a machine learning prediction model. As a use case, we will be working with the dataset about recidivism, i.e., the likelihood for a former imprisoned person to commit another offence within the first two years, since release from prison. The guided project will be making use of the COMPAS dataset, which already includes predicted as well as actual outcomes. Given also that this technique is largely based on statistical descriptors for measuring bias and fairness, it is very independent from specific Machine Learning (ML) prediction models. In this sense, the project will boost your career not only as a Data Scientists or ML developer, but also as a policy and decision maker....
Filtern nach:

1 - 2 von 2 Bewertungen für Interpretable machine learning applications: Part 5

von Mohamed K

20. Juni 2021

G​ood

von Pascal U E

3. Juli 2021

Good content, but hard to follow the instructor and do as he does