Introduction to Topic Modelling in R

von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Load textual data into R, and pre-process it

Convert textual data into a document feature matrix Run an LDA topic model on your data

Clock1
BeginnerAnfänger
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

By the end of this project, you will know how to load and pre-process a data set of text documents by converting the data set into a document feature matrix and reducing it’s dimensionality. You will also know how to run an unsupervised machine learning LDA topic model (Latent Dirichlet Allocation). You will know how to plot the change in topics over time as well as explore the distribution of topic probability in each document.

Kompetenzen, die Sie erwerben werden

  • sampling
  • Topic Modelling
  • Unsupervised Learning
  • Data Visualization (DataViz)
  • Text Corpus

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Load textual data into R, and pre-process it to prepare it for topic modelling

  2. Convert textual data into a document feature matrix and reduce its dimensionality before applying the model.

  3. Run an LDA topic model on your data and explore the topics identified by the model as well as the most frequently used words associated with each topic.

  4. Plot the change in topics over time in your data as well as to explore the distribution of topic probabilities in each of your textual documents.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.