Build a Machine Learning Web App with Streamlit and Python

4.7
Sterne
284 Bewertungen
von
Coursera Project Network
7,157 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Build interactive web applications with Streamlit and Python

Train Logistic Regression, Random Forest, and Support Vector Classifiers using scikit-learn

Plot evaluation metrics for binary classification algorithms

Clock1.5 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

Welcome to this hands-on project on building your first machine learning web app with the Streamlit library in Python. By the end of this project, you are going to be comfortable with using Python and Streamlit to build beautiful and interactive ML web apps with zero web development experience! We are going to load, explore, visualize and interact with data, and generate dashboards in less than 100 lines of Python code! Our web application will allows users to choose what classification algorithm they want to use and let them interactively set hyper-parameter values, all without them knowing to code! Prior experience with writing simple Python scripts and using pandas for data manipulation is recommended. It is required that you have an understanding of Logistic Regression, Support Vector Machines, and Random Forest Classifiers and how to use them in scikit-learn. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Data ScienceMachine LearningPython ProgrammingStreamlitScikit-Learn

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Project Overview and Demo

  2. Turn Simple Python Scripts into Web Apps

  3. Load the Mushrooms Data Set

  4. Creating Training and Test Sets

  5. Plot Evaluation Metrics

  6. Training a Support Vector Classifier

  7. Training a Support Vector Classifier (Part 2)

  8. Train a Logistic Regression Classifier

  9. Training a Random Forest Classifier

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von BUILD A MACHINE LEARNING WEB APP WITH STREAMLIT AND PYTHON

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..