Medical Image Classification using Tensorflow

von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Import and compile a Residual Convolutional Network (Resnet).

Train a Resnet to identify pleural effusion in chest x-ray (CXR) images.

Use the fully trained Resnet for inference functions identifying effusion.

Clock2 hours
AdvancedFortgeschritten
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

The medical imaging industry is set to see 9 and a half billion dollars in growth in just a few years, mostly due to advances in AI imaging technologies. AI integration with medical imaging is expected to gain traction as it enables increased productivity, improved accuracy, and reduced errors in the diagnosis performed by technicians and radiologists. The use of AI will also automate the labor-intensive manual segmentation and enable technicians to identify abnormalities, in turn, accelerating the treatment process. Furthermore, AI platforms are also being developed for hospitals and health systems to help clinicians in making quick decisions and improving patient outcomes. Ultimately, this field of research will benefit from more minds refining the technology. This project will get you started in using Python and Tensorflow/Keras for advanced medical imaging. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • tensorflow in production
  • image classification
  • health informatics analysis

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Preprocess medical imaging data

  2. Compile a neural network model -Part 1

  3. Compile a neural network model -Part 2

  4. Build and Train a Resnet Model to recognize lung effusion

  5. Making Predictions in Inference

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.