Mining Quality Prediction Using Machine & Deep Learning

4.8
Sterne

38 Bewertungen

von

3.409 bereits angemeldet

In diesem angeleitetes Projekt werden Sie:

Train Artificial Neural Network models to perform regression tasks

Understand the theory and intuition behind regression models and train them in Scikit Learn

Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, adjusted R2

1.5 hours
Anfänger
Kein Download erforderlich
Video auf geteiltem Bildschirm
Englisch
Nur Desktop

In this 1.5-hour long project-based course, you will be able to: - Understand the theory and intuition behind Simple and Multiple Linear Regression. - Import Key python libraries, datasets and perform data visualization - Perform exploratory data analysis and standardize the training and testing data. - Train and Evaluate different regression models using Sci-kit Learn library. - Build and train an Artificial Neural Network to perform regression. - Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, and adjusted R2. - Assess the performance of regression models and visualize the performance of the best model using various KPIs.

Kompetenzen, die Sie erwerben werden

  • regression models

  • Deep Learning

  • Artificial Intelligence (AI)

  • Machine Learning

  • Python Programming

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform data exploration

  3. Perform data visualization

  4. Prepare the data before model training

  5. Train and evaluate a linear regression model

  6. Train and evaluate a decision tree and random forest models

  7. Understand the theory and intuition behind artificial neural networks

  8. Train an artificial neural network to perform regression task

  9. Compare models and calculate regression KPIs

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von MINING QUALITY PREDICTION USING MACHINE & DEEP LEARNING

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.

Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.

Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.

Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.

Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.

Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.

Für angeleitete Projekte ist kein Auditing verfügbar.

Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.

Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.

Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.