Named Entity Recognition using LSTMs with Keras

4.4
Sterne
148 Bewertungen
von
Coursera Project Network
4,097 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Build and train a bi-directional LSTM with Keras

Solve the Named Entity Recognition (NER) problem with LSTMs

Clock1.5 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project-based course, you will use the Keras API with TensorFlow as its backend to build and train a bidirectional LSTM neural network model to recognize named entities in text data. Named entity recognition models can be used to identify mentions of people, locations, organizations, etc. Named entity recognition is not only a standalone tool for information extraction, but it also an invaluable preprocessing step for many downstream natural language processing applications like machine translation, question answering, and text summarization. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Deep LearningMachine LearningTensorflowLong Short-Term Memory (ISTM)keras

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Project Overview and Import Modules

  2. Load and Explore the NER Dataset

  3. Retrieve Sentences and Corresponding Tags

  4. Define Mappings between Sentences and Tags

  5. Padding Input Sentences and Creating Train/Test Splits

  6. Build and Compile a Bidirectional LSTM Model

  7. Train the Model

  8. Evaluate Named Entity Recognition Model

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von NAMED ENTITY RECOGNITION USING LSTMS WITH KERAS

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..