Predict Gas Guzzlers using a Neural Net Model on the MPG Data Set

4.7
Sterne
21 Bewertungen
von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Complete a random Training and Test Set from one Data Source using an R function.

Practice data distribution using R and ggplot2.

Apply a Neural Net model to the Data and examine the results by building a Confusion Matrix.

Clock2 Hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project-based course, you will learn how to (complete a training and test set using an R function, practice looking at data distribution using R and ggplot2, Apply a Neural Net model to the data, and examine the results using a Confusion Matrix. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Random ForestData ScienceData AnalysisMachine Learning

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Neural Network using the NeuralNet R package on the MPG data set. There will be a short discussion about the Interface and an Instructor Bio.

  2. Task 2: The Learners will get experience looking at the data using ggplot2. This is important in order for the practitioner to see the balance of the data, especially as it relates to the Response Variable.

  3. Task 3: The Learner will get experience creating Testing and Training Data Sets. There are multiple ways to do this and the Instructor will go over two of them in this Task.

  4. Task 4: The Learner will get experience with the syntax of the Neuralnet package in R by building out a neural net model. There will be a short discussion on the differences between the predict function in R and compute with the Neuralnet package as well.

  5. Task 5: The Learner will get experience evaluation models in this Task. The Confusion Matrix will be discussed as the evaluation metric of choice for the specific problem. The conclusion of the course will use the two evaluation metrics see how well the model performed on the test data set.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

  • Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.

  • Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.

  • Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Kursteilnehmern auf der ganzen Welt zu beeinflussen.

  • Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.

  • Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.

  • Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.

  • Für angeleitete Projekte ist kein Auditing verfügbar.

  • Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.

  • Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.

  • Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..