Predict Housing Prices in R on Boston Housing Data

35 Bewertungen
Coursera Project Network
1,633 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

How to create Testing and Training Sets via R.

Ability to apply GBM, Random Forest, and Linear Models to a data set.

Ability to evaluate and choose the most accurate models.

Clock2 Hours
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project-based course, you will learn how to (complete a training and test set using an R function, practice looking at data distribution using R and ggplot2, Apply a Random Forest model to the data, and examine the results using RMSE and a Confusion Matrix). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Machine LearningR ProgrammingData AnalysisRandom ForestExploratory Data Analysis

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Random Forest Model using R and the Boston Housing Data set. There will be a short discussion about the Interface and an Instructor Bio.

  2. Task 2: The Learners will get practice doing Exploratory Analysis using ggplot2. This is important in order for the practitioner to see the balance of the data, especially as it relates to the Response Variable.

  3. Task 3: The Learner will get experience creating Testing and Training Data Sets. There are multiple ways to do this in R. The Instructor will show the Learner how to do it using the Base R way and also using a function from the caret package.

  4. Task 4: The Learner will get experience with the syntax of the Caret, an R package. Then the Learner will create three models (Linear Regression, GBM, Random Forest) in one function call.

  5. Task 5: The Learner will get practice compiling the model results from the various models to decide which one performed the best.

  6. Task 6: The Learner will get practice looking and comparing multiple models using RMSE among other metrics.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.



Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..