Machine Learning: Create a Neural Network that Predicts whether an Image is a Car or Airplane.

4.4
Sterne
62 Bewertungen
von
Coursera Project Network
2,568 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

  1. Complete a Neural Network Model that will be used to evaluate whether a Picture is an Airplane or Automobile.

Practice using One Hot Encoding to build a classifier.

Practice evaluating model performance.

Clock2 Hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project-based course, you will learn how to build a Neural Network Model using Keras and the MNIST Data Set. By the end of the course you will have built a model that will recognize the digits of hand written numbers. You will also be exposed to One Hot Encoding, Neural Network Architecture, Loss Optimizers and Testing of the Model's performance. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Image ProcessingComputer VisionData AnalysisMachine Learning

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Neural Network using raw images from the Internet.

  2. Task 2: The Learners will get practice Loading Images.

  3. Task 3: The Learner will get experience pre-processing images using the EBImage package in R.

  4. Task 4: The Learner will reshape the images using a Keras function called array_reshape().

  5. Task 5: The Learner will get practice creating Testing and Training sets.

  6. Task 6: The Learner will then create a classifier using one hot encoding.

  7. Task 7: The Learner will then build out the architecture for the Neural Network. Rectified Linear Unit ("RELU") and SoftMax will be used.

  8. Task 8: The Learner will then build out a loss optimizer function using cross_entropy.

  9. Task 9: The Learner will test to see how the model performed using a Confusion Matrix.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

  • Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.

  • Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.

  • Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Kursteilnehmern auf der ganzen Welt zu beeinflussen.

  • Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.

  • Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.

  • Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.

  • Für angeleitete Projekte ist kein Auditing verfügbar.

  • Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.

  • Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.

  • Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..