Image Compression with K-Means Clustering

4.6
Sterne
264 Bewertungen
von
Coursera Project Network
7,406 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Explain the steps involved in k-means clustering

Apply k-means clustering with scikit-learn to compress images

Create interactive, GUI components in Jupyter notebooks using Jupyter widgets

Clock2 hours
BeginnerAnfänger
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this project, you will apply the k-means clustering unsupervised learning algorithm using scikit-learn and Python to build an image compression application with interactive controls. By the end of this 45-minute long project, you will be competent in pre-processing high-resolution image data for k-means clustering, conducting basic exploratory data analysis (EDA) and data visualization, applying a computationally time-efficient implementation of the k-means algorithm, Mini-Batch K-Means, to compress images, and leverage the Jupyter widgets library to build interactive GUI components to select images from a drop-down list and pick values of k using a slider. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Machine LearningclusteringIpythonK-Means ClusteringScikit-Learn

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Introduction and Overview

  2. Data Preprocessing

  3. Visualizing the Color Space using Point Clouds

  4. Visualizing the K-means Reduced Color Space

  5. Creating Interactive Controls with Jupyter Widgets

  6. K-means Image Compression with Interactive Controls

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von IMAGE COMPRESSION WITH K-MEANS CLUSTERING

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..