Statistical Data Visualization with Seaborn From UST

4.6
Sterne
152 Bewertungen
von
Coursera Project Network
6.932 bereits angemeldet
In diesem Kostenloses angeleitetes Projekt werden Sie:

Produce and customize various chart types with Seaborn

Apply feature selection and feature extraction methods with scikit-learn

Build a boosted decision tree classifier with XGBoost

Präsentieren Sie diese praktische Erfahrung in einem Vorstellungsgespräch

Clock1.5 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

Welcome to this Guided Project on Statistical Data Visualization with Seaborn, From UST. For more than 20 years, UST has worked side by side with the world’s best companies to make a real impact through transformation. Powered by technology, inspired by people and led by their purpose, they partner with clients from design to operation. With this Guided Project from UST, you can quickly build in-demand job skills and expand your career opportunities in the Data Science field. Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox as well as a powerful tool to identify problems in analyses and for illustrating results. In this project, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) data set. Using the exploratory data analysis (EDA) results from the Breast Cancer Diagnosis – Exploratory Data Analysis Guided Project, you will practice dropping correlated features, implement feature selection and utilize several feature extraction methods including; feature selection with correlation, univariate feature selection, recursive feature elimination, principal component analysis (PCA) and tree based feature selection methods. Lastly, we will build a boosted decision tree classifier with XGBoost to classify tumors as either malignant or benign. By the end of this Guided Project, you should feel more confident about working with data, creating visualizations for data analysis, and have practiced several methods which apply to a Data Scientist’s role. Let's get started!

Anforderungen

Some experience in the basic programming commands of Python and a general understanding of machine learning.

Kompetenzen, die Sie erwerben werden

  • Data Science
  • Machine Learning
  • Python Programming
  • Seaborn
  • Data Visualization (DataViz)

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Project Overview

  2. Importing Libraries and Data

  3. Dropping Correlated Columns from Feature List

  4. Classification using XGBoost (minimal feature selection)

  5. Univariate Feature Selection

  6. Recursive Feature Elimination with Cross-Validation

  7. Plot CV Scores vs Number of Features Selected

  8. Feature Extraction using Principal Component Analysis

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von STATISTICAL DATA VISUALIZATION WITH SEABORN FROM UST

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.