Support Vector Machines with scikit-learn

4.3
Sterne
301 Bewertungen
von
Coursera Project Network
7.489 bereits angemeldet
In diesem Angeleitetes Projekt werden Sie:

Understand the theory behind support vector machines

Builld SVM models with scikit-learn to classify linear and non-linear data

Determine the strengths and limitations of SVMs

Develop an SVM-based facial recognition model

Clock2.5 hours
BeginnerAnfänger
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this project, you will learn the functioning and intuition behind a powerful class of supervised linear models known as support vector machines (SVMs). By the end of this project, you will be able to apply SVMs using scikit-learn and Python to your own classification tasks, including building a simple facial recognition model. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Data ScienceMachine LearningPython ProgrammingSupport Vector Machine (SVM)Data Analysis

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Getting Started

  2. Beyond Linear Discriminative Classifiers

  3. Many Possible Separators

  4. Plotting the Margins

  5. Training an SVM Model

  6. Facial Recognition with SVMs

  7. Preprocessing the data set

  8. Hyperparameter Tuning with Grid-Search Cross Validation

  9. Visualize Test Images

  10. Evaluating the Support Vector Classifier

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von SUPPORT VECTOR MACHINES WITH SCIKIT-LEARN

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..