Machine Learning for Telecom Customers Churn Prediction

11 Bewertungen
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Understand the theory and intuition behind machine learning classifiers such as Logistic Regression, Support Vector Machines, and Random Forest.

Compare trained models by calculating AUC score and plot ROC curve

Train various classifier models using Scikit-Learn library

Clock2 hours
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this hands-on project, we will train several classification algorithms such as Logistic Regression, Support Vector Machine, K-Nearest Neighbors, and Random Forest Classifier to predict the churn rate of Telecommunication Customers. Machine learning help companies analyze customer churn rate based on several factors such as services subscribed by customers, tenure rate, and payment method. Predicting churn rate is crucial for these companies because the cost of retaining an existing customer is far less than acquiring a new one. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Artificial Intelligence (AI)
  • Machine Learning
  • Python Programming
  • classification
  • Computer Programming

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform Exploratory Data Analysis

  3. Perform Data Visualization

  4. Prepare the data before model training

  5. Train and Evaluate a Logistic Regression model

  6. Train and Evaluate a Support Vector Machine Model

  7. Train and Evaluate a Random Forest Classifier model

  8. Train and Evaluate a K-Nearest Neighbor model

  9. Train and Evaluate a Naive Bayes Classifier model

  10. Compare the trained models by calculating AUC score and plot ROC curve

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.