Desarrollar una aplicación web de ML con PyCaret y Streamlit

Desarrollar un modelo de ML con Pycaret
Desarrollar una aplicación web con Streamlit
Desplegar en un servidor un modelo de ML embebido en una aplicación web
Desarrollar un modelo de ML con Pycaret
Desarrollar una aplicación web con Streamlit
Desplegar en un servidor un modelo de ML embebido en una aplicación web
Este proyecto es un curso práctico para crear una aplicación web con un modelo de aprendizaje automático. Aprenderemos desde las bases a utilizar librerías y herramientas como Pycaret, Streamlit, Heroku y GitHub, entre otros. Gracias a este curso desarrollarás tu propio modelo de ML y página web y lo desplegarás en un servidor de Heroku.
Machine Learning
Streamlit
PyCaret
Heroku
In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:
Introducción y herramientas
Fundamentos de Pycaret
Entrenamiento y validación del modelo con Pycaret
Creación de la aplicación web con Streamlit
Despliegue del código en Git y Heroku
Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich
Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.
Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.
Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.
Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.
Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.
Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.
Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.
Für angeleitete Projekte ist kein Auditing verfügbar.
Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.
Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.
Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.