Über dieses Spezialisierung

20.022 kürzliche Aufrufe
About GANs Generative Adversarial Networks (GANs) are powerful machine learning models capable of generating realistic image, video, and voice outputs. Rooted in game theory, GANs have wide-spread application: from improving cybersecurity by fighting against adversarial attacks and anonymizing data to preserve privacy to generating state-of-the-art images, colorizing black and white images, increasing image resolution, creating avatars, turning 2D images to 3D, and more. About this Specialization The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. About you This Specialization is for software engineers, students, and researchers from any field, who are interested in machine learning and want to understand how GANs work. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research.
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
Kurse, die komplett online stattfinden
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexibler Zeitplan
Festlegen und Einhalten flexibler Termine.
Stufe „Mittel“
Etwa 3 Monate bis zum Abschluss
Empfohlenes Lerntempo: 9 Stunden/Woche
Englisch
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
Kurse, die komplett online stattfinden
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexibler Zeitplan
Festlegen und Einhalten flexibler Termine.
Stufe „Mittel“
Etwa 3 Monate bis zum Abschluss
Empfohlenes Lerntempo: 9 Stunden/Woche
Englisch

So funktioniert die Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

Es gibt 3 Kurse in dieser Spezialisierung

Kurs1

Kurs 1

Build Basic Generative Adversarial Networks (GANs)

4.7
Sterne
1,249 Bewertungen
306 Bewertungen
Kurs2

Kurs 2

Build Better Generative Adversarial Networks (GANs)

4.7
Sterne
460 Bewertungen
69 Bewertungen
Kurs3

Kurs 3

Apply Generative Adversarial Networks (GANs)

4.8
Sterne
359 Bewertungen
74 Bewertungen

von

Placeholder

deeplearning.ai

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..