Über dieses Spezialisierung

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Ca. 2 Monate zum Abschließen

Empfohlen werden 10 Stunden/Woche

Deutsch

Untertitel: Deutsch, Französisch, Portugiesisch (Brasilien), Englisch, Spanisch, Japanisch...

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Ca. 2 Monate zum Abschließen

Empfohlen werden 10 Stunden/Woche

Deutsch

Untertitel: Deutsch, Französisch, Portugiesisch (Brasilien), Englisch, Spanisch, Japanisch...

So funktioniert das Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

how it works

Es gibt 5 Kurse in dieser Spezialisierung

Kurs1

How Google does Machine Learning auf Deutsch

Was ist maschinelles Lernen und welche Probleme lassen sich damit lösen? Für Google geht es beim maschinellen Lernen (ML) mehr um Logik als nur um Daten. In diesem Kurs erfahren Sie, warum dieser Ansatz beim Erstellen einer Pipeline aus ML-Modellen nützlich ist. Außerdem erläutern wir die fünf Phasen zur Umsetzung eines für ML geeigneten Anwendungsfalls und warum keine dieser Phasen übersprungen werden darf. Zum Abschluss besprechen wir die Verzerrung, die durch ML entstehen kann, und erklären, wie man sie erkennt.

...
Kurs2

Launching into Machine Learning auf Deutsch

Nach einem ersten Überblick über die Geschichte von ML erfahren Sie in diesem Kurs, weshalb heute mithilfe neuronaler Netzwerke viele Probleme so erfolgreich gelöst werden können. Wir erklären anschließend, wie Sie überwachtes Lernen zur Problemlösung einrichten und mithilfe des Gradientenverfahrens gute Ergebnisse erzielen. Dazu sind Datasets erforderlich, mit denen die Generalisierung möglich ist. In diesem Kurs zeigen wir Ihnen, wie Sie Datasets auf wiederholbare Weise erstellen, um Experimente zu ermöglichen. Kursziele: Erkennen, warum Deep Learning derzeit beliebt ist Modelle anhand von Verlustfunktionen und Leistungsmesswerten optimieren und auswerten Häufige Probleme rund um maschinelles Lernen minimieren Wiederholbare und skalierbare Datasets zum Trainieren, Auswerten und Testen erstellen

...
Kurs3

Intro to TensorFlow auf Deutsch

Dies ist eine Einführung in die Grundlagen von TensorFlow. Darin werden die Konzepte und APIs erläutert, die Sie zum Schreiben verteilter Modelle für maschinelles Lernen benötigen. Außerdem wird anhand eines TensorFlow-Modells erklärt, wie Sie Modelle in großem Umfang trainieren und mit Cloud Machine Learning Engine effektive Vorhersagen treffen können. Lernziele: Modelle für maschinelles Lernen in TensorFlow erstellen Diverse Herausforderungen mit TensorFlow-Bibliotheken lösen Gängige Codefehler in TensorFlow beheben Mit tf.estimator ein ML-Modell erstellen, trainieren und bewerten ML-Modelle im großen Umfang mit Cloud ML Engine trainieren, bereitstellen und in der Produktion verwenden

...
Kurs4

Feature Engineering auf Deutsch

Sie möchten erfahren, wie Sie die Genauigkeit Ihrer maschinellen Lernmodelle verbessern oder wie Sie herausfinden, welche Datenspalten die nützlichsten Funktionen ergeben? Willkommen zum Feature Engineering mit der Google Cloud Platform. Wir erörtern in diesem Kurs nützliche und nutzlose Funktionen und wie Sie diese für die optimale Nutzung in Ihren maschinellen Lernmodellen vorverarbeiten und umwandeln. In praktischen, interaktiven Labs lernen Sie, Funktionen auszuwählen und mit der Google Cloud Platform vorzuverarbeiten. Unsere Kursleiter präsentieren Ihnen die Code-Lösungen, die zu Referenzzwecken auch öffentlich gemacht werden, während Sie an Ihren eigenen zukünftigen ML-Projekten arbeiten.

...

Über Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Häufig gestellte Fragen

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • Für diese Spezialisierung gibt es keine akademischen Leistungspunkte, doch Hochschulen können nach eigenem Ermessen Leistungspunkte für Spezialisierungszertifikate vergeben. Wenden Sie sich an Ihre Einrichtung, um mehr zu erfahren.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..