Über dieses Spezialisierung
639

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Ca. 2 Monate zum Abschließen

Empfohlen werden 12 Stunden/Woche

Französisch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Ca. 2 Monate zum Abschließen

Empfohlen werden 12 Stunden/Woche

Französisch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

So funktioniert das Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

how it works

Es gibt 5 Kurse in dieser Spezialisierung

Kurs1

How Google does Machine Learning en Français

Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google adopte une approche particulière du machine learning qui s'appuie non seulement sur les données, mais également sur la logique. Nous expliquerons l'intérêt que présente cette conception pour la création d'un pipeline de modèles de ML. Ensuite, nous examinerons les cinq phases permettant de convertir un cas d'utilisation devant être traité à l'aide du machine learning et étudierons pourquoi chaque étape est importante. Enfin, nous identifierons les biais que le machine learning est susceptible d'amplifier et apprendrons à les repérer....
Kurs2

Launching into Machine Learning en Français

Après avoir présenté un historique du machine learning, nous étudierons pourquoi les réseaux de neurones sont aujourd'hui parfaitement adaptés à diverses problématiques. Nous apprendrons ensuite à définir un problème d'apprentissage supervisé et à trouver une solution adaptée à l'aide d'une descente de gradient. Ce processus implique la création d'ensembles de données permettant la généralisation. Nous examinerons comment procéder à cette opération de façon reproductible de sorte que l'expérimentation soit possible. Objectifs du cours : Déterminer pourquoi le deep learning est désormais si courant Optimiser et évaluer des modèles en utilisant des fonctions de perte et des statistiques de performances Corriger les problèmes courants liés au machine learning Créer des ensembles de données de formation, d'évaluation et de test reproductibles et évolutifs...
Kurs3

Intro to TensorFlow en Français

Ce cours présente l'approche TensorFlow de bas niveau et dresse la liste des concepts et API nécessaires pour la rédaction de modèles de machine learning distribués. Nous verrons comment appliquer une évolutivité horizontale à l'entraînement d'un modèle TensorFlow afin d'offrir des prédictions très pertinentes avec Cloud Machine Learning Engine. Objectifs du cours : Créer des modèles de machine learning dans TensorFlow Utiliser les bibliothèques TensorFlow pour résoudre des problèmes numériques Résoudre les problèmes et déboguer les erreurs de code courantes sur TensorFlow Utiliser tf.estimator pour créer, entraîner et évaluer un modèle de ML Entraîner et déployer les modèles de ML avant de les envoyer en production à grande échelle avec Cloud ML Engine...
Kurs4

Feature Engineering en Français

Vous souhaitez découvrir comment améliorer la précision de vos modèles de machine learning (ML) ? Vous voulez identifier les colonnes de données offrant les caractéristiques les plus utiles ? Bienvenue dans le cours Feature Engineering on Google Cloud Platform (Extraction de caractéristiques sur Google Cloud Platform). Nous vous expliquerons ce qui distingue les bonnes caractéristiques des mauvaises, puis nous vous montrerons comment prétraiter et transformer vos caractéristiques afin d'optimiser leur efficacité dans vos modèles. Des ateliers interactifs vous permettront de mettre en pratique ce que vous avez appris. Vous sélectionnerez vous-même des caractéristiques, puis les prétraiterez dans Google Cloud Platform. Nos formateurs vous aideront à comprendre les solutions de code. Ces solutions seront accessibles à tous, et pourront vous servir de référence en cas de besoin lorsque vous travaillerez sur vos propres projets de ML....

Über Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Häufig gestellte Fragen

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • Für diese Spezialisierung gibt es keine akademischen Leistungspunkte, doch Hochschulen können nach eigenem Ermessen Leistungspunkte für Spezialisierungszertifikate vergeben. Wenden Sie sich an Ihre Einrichtung, um mehr zu erfahren.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..