Einige einschlägige Kenntnisse erforderlich.
Spezialisierung Machine Learning with TensorFlow on Google Cloud en Français
Apprenez à utiliser le ML avec Google Cloud. Découvrez et utilisez le machine learning de bout en bout en conditions réelles.
von
Über dieses Spezialisierung
Praktisches Lernprojekt
Cette spécialisation comporte des ateliers pratiques à réaliser sur notre plate-forme Qwiklabs.
Ces ateliers vous permettent d'appliquer ce que vous apprenez dans les cours en vidéo. Les projets sont axés autour de thèmes tels que les produits Google Cloud Platform. Ces derniers sont d'ailleurs utilisés et configurés dans Qwiklabs. Vous développerez ainsi une expérience pratique des concepts expliqués dans les modules.
Einige einschlägige Kenntnisse erforderlich.
So funktioniert die Spezialisierung
Kurse absolvieren
Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Lernender-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.
Praxisprojekt
Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.
Zertifikat erwerben
Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

Es gibt 5 Kurse in dieser Spezialisierung
How Google does Machine Learning en Français
Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google adopte une approche particulière du machine learning qui s'appuie non seulement sur les données, mais également sur la logique. Nous expliquerons l'utilité d'une telle définition pour les data scientists à l'heure de créer un pipeline de modèles de machine learning.
Launching into Machine Learning en Français
À partir de l'histoire du machine learning, nous examinons les raisons pour lesquelles les réseaux de neurones fonctionnent si bien de nos jours dans différents problèmes liés à la science des données. Nous évoquons ensuite la façon d'aborder un problème d'apprentissage supervisé et le moyen d'y répondre en utilisant la descente de gradient. Cela implique de créer des ensembles de données menant à une généralisation ; nous évoquons les méthodes pour y parvenir de façon reproductible en utilisant l'expérimentation.
Intro to TensorFlow en Français
Ce cours va vous expliquer comment exploiter la flexibilité et la facilité d'utilisation de TensorFlow 2.x et de Keras pour créer, entraîner et déployer des modèles de machine learning. Vous en apprendrez plus sur la hiérarchie de l'API TensorFlow 2.x et découvrirez les principaux composants de TensorFlow à travers divers exercices pratiques. Nous allons vous montrer comment travailler avec des ensembles de données et des colonnes de caractéristiques. Vous apprendrez à concevoir et à créer un pipeline de données d'entrée TensorFlow 2.x. À l'aide d'exercices pratiques, vous vous entraînerez à charger des données CSV, des tableaux Numpy, des données de texte et des images à l'aide de tf.Data.Dataset. Vous vous entraînerez également à créer des colonnes de caractéristiques numériques, catégorielles, en buckets et hachées.
Feature Engineering en Français
Vous voulez savoir comment améliorer la précision de vos modèles de ML ? Et quelles colonnes de données créent les caractéristiques les plus utiles ? Bienvenue dans "Extraction de caractéristiques". Nous allons passer en revue les bonnes et les mauvaises caractéristiques, et voir comment les prétraiter et les transformer pour les utiliser efficacement dans vos modèles.
von

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
Häufig gestellte Fragen
Wie erfolgen Rückerstattungen?
Kann ich mich auch nur für einen Kurs anmelden?
Ist finanzielle Unterstützung möglich?
Kann ich kostenlos an diesem Kurs teilnehmen?
Findet dieser Kurs wirklich ausschließlich online statt? Muss ich zu irgendwelchen Sitzungen persönlich erscheinen?
Erhalte ich akademische Leistungspunkte für den Abschluss der Spezialisierung?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.