- Language Industry
- Information Seeking Behavior
- Collective Intelligence
- Social Media Mining
- Backtesting
- Uncertainty Analysis
- Financial Analysis
- Motion Chart
Spezialisierung Machine Learning with TensorFlow Google Cloud 日本語版
Google Cloud で機械学習(ML)について学ぶ. 実践的なデータを使用した包括的な ML 実習
von
Kompetenzen, die Sie erwerben
Über dieses Spezialisierung
Praktisches Lernprojekt
この専門講座には 、Qwiklabs プラットフォームを使用したハンズオンラボが組み込まれています。
こうしたハンズオン コンポーネントにより、講義動画で学んだスキルを実際に使ってみることができます。プロジェクトには、Qwiklabs 内で使用、構成された Google Cloud Platform プロダクトなどのトピックが組み込まれています。モジュール全体で説明されている概念を使用して実際に体験してみましょう。
Einige einschlägige Kenntnisse erforderlich.
Einige einschlägige Kenntnisse erforderlich.
So funktioniert die Spezialisierung
Kurse absolvieren
Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Lernender-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.
Praxisprojekt
Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.
Zertifikat erwerben
Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

Es gibt 5 Kurse in dieser Spezialisierung
How Google does Machine Learning 日本語版
機械学習とはどのようなもので、どのような問題を解決できるでしょうか。Google は機械学習について、データだけでなくロジックの面からも独自の視点で考えています。機械学習モデルのパイプラインの構築について検討する際、このようなフレーミングがなぜデータ サイエンティストにとって有益であるかを説明します。
Launching into Machine Learning 日本語版
機械学習の歴史を皮切りに、ニューラル ネットワークがデータ サイエンスのさまざまな問題でうまく機能している理由をご紹介します。次に、教師あり学習の問題を設定し、勾配降下法を使用して適切な解決策を見つける方法について説明します。これには、一般化が可能なデータセットの作成も含まれます。実験に対応するため、繰り返し使用できるデータセットの作成方法について解説します。
Intro to TensorFlow 日本語版
このコースの目的は、柔軟で手軽な TensorFlow 2.x と Keras を使用して、機械学習モデルを作成、トレーニング、およびデプロイすることです。TensorFlow 2.x API の階層について学び、TensorFlow の主要コンポーネントを実践演習で理解します。データセットと特徴列の扱い方について学びます。TensorFlow 2.x 入力データ パイプラインの設計と作成の方法について学びます。tf.data.Dataset を使用して csv データ、NumPy 配列、テキストデータ、および画像を読み込む実践演習を行います。数値、カテゴリ、バケット、およびハッシュの特徴列を作成する実践演習も行います。
Feature Engineering 日本語版
機械学習(ML)モデルの精度を高める方法や、最も有用な特徴量を作成するためのデータ列の見極め方を学びたい方におすすめのコースです。この Feature Engineering コースでは、「良い」特徴量と「悪い」特徴量について説明し、それらをモデルで最大限に活用できるように前処理して変換する方法を解説します。
von

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
Häufig gestellte Fragen
Wie erfolgen Rückerstattungen?
Kann ich mich auch nur für einen Kurs anmelden?
Ist finanzielle Unterstützung möglich?
Kann ich kostenlos an diesem Kurs teilnehmen?
Findet dieser Kurs wirklich ausschließlich online statt? Muss ich zu irgendwelchen Sitzungen persönlich erscheinen?
Erhalte ich akademische Leistungspunkte für den Abschluss der Spezialisierung?
コースの購読を終了するにはどうすればいいですか?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.