Über dieses Spezialisierung

21,094 kürzliche Aufrufe
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Karriereergebnisse der Lernenden
50%
Ich nahm nach Abschluss dieses Spezialisierung einen neuen Beruf auf.
20%
Ich erhielt eine Gehaltserhöhung oder Beförderung.
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
Kurse, die komplett online stattfinden
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexibler Zeitplan
Festlegen und Einhalten flexibler Termine.
Stufe „Fortgeschritten“
Ca. 4 Monate zum Abschließen
Empfohlen werden 11 Stunden/Woche
Englisch
Untertitel: Englisch
Karriereergebnisse der Lernenden
50%
Ich nahm nach Abschluss dieses Spezialisierung einen neuen Beruf auf.
20%
Ich erhielt eine Gehaltserhöhung oder Beförderung.
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
Kurse, die komplett online stattfinden
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexibler Zeitplan
Festlegen und Einhalten flexibler Termine.
Stufe „Fortgeschritten“
Ca. 4 Monate zum Abschließen
Empfohlen werden 11 Stunden/Woche
Englisch
Untertitel: Englisch

Es gibt 3 Kurse in dieser Spezialisierung

Kurs1

Kurs 1

Probabilistic Graphical Models 1: Representation

4.7
Sterne
1,274 Bewertungen
281 Bewertungen
Kurs2

Kurs 2

Probabilistic Graphical Models 2: Inference

4.6
Sterne
442 Bewertungen
65 Bewertungen
Kurs3

Kurs 3

Probabilistic Graphical Models 3: Learning

4.6
Sterne
272 Bewertungen
41 Bewertungen

von

Stanford University-Logo

Stanford University

Häufig gestellte Fragen

  • Für diese Spezialisierung gibt es keine akademischen Leistungspunkte, doch Hochschulen können nach eigenem Ermessen Leistungspunkte für Spezialisierungszertifikate vergeben. Wenden Sie sich an Ihre Einrichtung, um mehr zu erfahren. Online-Abschlüsse und Mastertrack™-Zertifikate auf Coursera bieten die Möglichkeit, akademische Leistungspunkte zu erwerben.

  • Wenn Sie ein Abonnement abgeschlossen haben, erhalten Sie eine 7-tägige, kostenlose Testversion, die Sie gebührenfrei wieder kündigen können. Danach gewähren wir keine Rückerstattungen mehr, aber Sie können Ihr Abonnement jederzeit kündigen. Lesen Sie unsere vollständige Rückerstattungsrichtlinie.

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Ja, Coursera bietet für Kursteilnehmer, die sich die Kursgebühr nicht leisten können, finanzielle Unterstützung an. Bewerben Sie sich dafür, indem Sie auf den Link für finanzielle Unterstützung links unter der Schaltfläche „Anmelden“ klicken. Sie werden zum Ausfüllen eines Antrags aufgefordert und werden bei Genehmigung benachrichtigt. Diesen Schritt müssen Sie für jeden Kurs der Spezialisierung ausführen, auch für das Abschlussprojekt. Mehr erfahren

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse in der Spezialisierung und Sie erwerben ein Zertifikat, wenn Sie die Arbeit abschließen. Wenn Sie lediglich den Kursinhalt lesen und anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen. Wenn Sie die Gebühr nicht bezahlen können, haben Sie die Möglichkeit, finanzielle Hilfe zu beantragen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.

    Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes' rule).

  • For best results, the courses should be taken in order.

  • No.

  • You will be able to take a complex task and understand how it can be encoded as a probabilistic graphical model. You will now know how to implement the core probabilistic inference techniques, how to select the right inference method for the task, and how to use inference to reason. You will also know how to take a data set and use it to learn a model, whether from scratch, or to refine or complete a partially specified model.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..