Über dieses Spezialisierung

10,230 kürzliche Aufrufe
Karriereergebnisse der Lernenden
60%
Ich nahm nach Abschluss dieses Spezialisierung einen neuen Beruf auf.
12%
Ich erhielt eine Gehaltserhöhung oder Beförderung.

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Ca. 2 Monate zum Abschließen

Empfohlen werden 9 Stunden/Woche

Englisch

Untertitel: Englisch

Was Sie lernen werden

  • Build recommendation systems

  • Implement collaborative filtering

  • Master spreadsheet based tools

  • Use project-association recommenders

Kompetenzen, die Sie erwerben

Collaborative FilteringRecommender SystemsEvaluationLensKitMatrix Factorization
Karriereergebnisse der Lernenden
60%
Ich nahm nach Abschluss dieses Spezialisierung einen neuen Beruf auf.
12%
Ich erhielt eine Gehaltserhöhung oder Beförderung.

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Ca. 2 Monate zum Abschließen

Empfohlen werden 9 Stunden/Woche

Englisch

Untertitel: Englisch

So funktioniert die Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

how it works

Es gibt 5 Kurse in dieser Spezialisierung

Kurs1

Kurs 1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
Sterne
487 Bewertungen
99 Bewertungen
Kurs2

Kurs 2

Nearest Neighbor Collaborative Filtering

4.3
Sterne
243 Bewertungen
56 Bewertungen
Kurs3

Kurs 3

Recommender Systems: Evaluation and Metrics

4.3
Sterne
176 Bewertungen
25 Bewertungen
Kurs4

Kurs 4

Matrix Factorization and Advanced Techniques

4.3
Sterne
145 Bewertungen
21 Bewertungen

von

University of Minnesota-Logo

University of Minnesota

0

Häufig gestellte Fragen

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • Most learners should be able to complete the specialization in 20-26 weeks.

  • Basic statistics or college algebra, and an ability to work with spreadsheets. For the honors track, you should also be comfortable implementing software in Java.

  • While each component can be useful by itself, the courses do build on each other and should be taken in order.

  • The University of Minnesota does not offer credit for completing this specialization. If you are enrolled elsewhere, you may wish to speak with your advisor or program staff to find out whether this specialization could be used for independent study credit.

  • You will understand and be able to apply the major families of recommender algorithms: non-personalized, product association, content-based, nearest-neighbor, and matrix factorization. You will know and be able to apply a variety of recommender metrics, and will be able to use this knowledge to match the correct recommender system to appplications.

  • The honors track is an optional track where learners add programming recommenders in the open source LensKit toolkit. You should be comfortable with basic data structures, algorithms, and Java to attempt the honors track.

  • This specialization is an extended and updated version of the two prior versions of Introduction to Recommender Systems that we've offered through Coursera. About 50% of the video and 80% of the assessment material are new, and there is an honors track with programming assignments (which existed in the first version of the course only, and have been re-done for this specialization). The Capstone is entirely new.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..