Zurück zu Data Science Math Skills

4.5

Sterne

8,038 Bewertungen

•

1,816 Bewertungen

Data science courses contain math—no avoiding that! This course is designed to teach learners the basic math you will need in order to be successful in almost any data science math course and was created for learners who have basic math skills but may not have taken algebra or pre-calculus. Data Science Math Skills introduces the core math that data science is built upon, with no extra complexity, introducing unfamiliar ideas and math symbols one-at-a-time.
Learners who complete this course will master the vocabulary, notation, concepts, and algebra rules that all data scientists must know before moving on to more advanced material.
Topics include:
~Set theory, including Venn diagrams
~Properties of the real number line
~Interval notation and algebra with inequalities
~Uses for summation and Sigma notation
~Math on the Cartesian (x,y) plane, slope and distance formulas
~Graphing and describing functions and their inverses on the x-y plane,
~The concept of instantaneous rate of change and tangent lines to a curve
~Exponents, logarithms, and the natural log function.
~Probability theory, including Bayes’ theorem.
While this course is intended as a general introduction to the math skills needed for data science, it can be considered a prerequisite for learners interested in the course, "Mastering Data Analysis in Excel," which is part of the Excel to MySQL Data Science Specialization. Learners who master Data Science Math Skills will be fully prepared for success with the more advanced math concepts introduced in "Mastering Data Analysis in Excel."
Good luck and we hope you enjoy the course!...

VS

Sep 23, 2020

This course syllabus is great. It starts wonderfully. Week 1 to 4 is taught by Paul Bendich, and Daniel Egger the instruction is awesome. Effective way to refresh and add the Data Science math skills!

RS

May 06, 2020

This was mostly review for me though probability especially Beyes Theorem derivation was new. The instructors provided clear often refreshing ways to look at material.\n\nThank you for a great class!!

Filtern nach:

von Abdul H S

•May 04, 2020

It covers all basics of mathematics and of-course intermediate concepts from Mathematics which are essential for data science in general, and very useful for data mining, data storage etc.

von Annisaa H A

•Jul 11, 2020

the first 2 practices and quiz was not that challenging, but the starting from week 3 it's getting hard.

von Simas J

•Jul 27, 2020

The lectures notes did not contained too much of supportive material followed by the video lectures. I would suggest that video notes, would contain not just the same content that has been shown in the video lectures, but in addition a further reading material that would allow student to strengthen his understanding on the topic, as well as include exercises with answers (+ solutions) so a student could be firm in his knowledge before proceeding to the next section. At least some links to fill in the knowledge gaps or relevant subject.

The video lectures, although have been very informative and useful, I found a significant difference in how subject have been taught and discussed by both teachers. I would highly recommend to address such unbalances in teaching, as it discourages from continuing and finishing the course (initial lectures were greatly useful and the quality of the lessons deteriorated as the course progressed).

Overall, I have found this course useful, however I doubt I have gained much from the week 4 (probability subject) as the material was not really intuitive and hard to follow with great jumps in knowledge which one may not be aware, unless had previous experience on the topic.

I would recommend this course to people who have already an intermediate (or above) understanding of the subjects taught and/or would like to recap areas which has been forgotten over time. I would not recommend this course if you are a beginner or have large knowledge gaps on Maths as it will make the lectures hard to follow and probably difficult to identify the gaps in one's own knowledge.

von Susmito R

•Jul 13, 2019

The first two weeks of the course were great! The instructor was very clear in his explanations and made the material very intuitive. The video companion pdf's were also very well written. But from the third week onward, when the other instructor took over, not only did the explanations suffer significantly, the video companion material also ceased to be of much help. He did not explain any of the intuition behind any of the formulas and he didn't even try to explain the intuition behind when and where the formulas would apply. I didn't take this course just to be given a bunch of formulas. I really wanted to understand the material because I knew these are foundational concepts that needed to be mastered. Khan Academy explains a lot of the material of weeks 3 and 4 much better. I really wish someone had explained how the version of the binomial theorem that was presented in this course is related to the traditional version that we learned in school while doing binomial expansions in algebra.

von Allen F

•Oct 05, 2019

The first part of this course was great. It was the right level of material, taught simply and effectively with quizzes and exams that were on par with the taught material. The second half was not so great. The teaching style of the second teacher did not convey the material as effectively as the first teacher. Also, I felt that the week 4 probability quiz and final exam had material way beyond what was taught during the lesson. There should have been some exercises to warm us up and get us to the difficulty level of the final. It felt like going from 0-100 mph. Overall because of the stark difference in teaching and difficulty of the final exam of part 4, I can only give this course three stars for the great start.

von Md. Z M

•Mar 08, 2019

For someone with a Computer Science background at the undergraduate level, I find the contents basic. However, the intention of the course was to give a refresher for data science professionals who find the mathematical jargon frequently used in practice hard to comprehend. In this sense, the first half of the course taught by Prof. Paul Bendich were good. The second part of the course taught by Prof. Daniel Egger needs a lot of improvement in content delivery and better explanation. The quizzes on probability are challenging and enjoyable. Also, when I took the course as on March 2019, there wasn't any activity on the discussion forum. It seems there are not many students taking the course with me, and it also wasn't monitored by the course staff.

von Deleted A

•Aug 20, 2017

The first two weeks are good. The material is explained in a fairly intuitive way. One can easily understand the theory. It is also explained why and how a presented concept is related to data science.

The last two weeks however are to shallow and abstract in the explanations. I had to check external websites to fully understand the material. The lectures also didn't prepare me good enough for the tests. Sometimes I felt lost and the video companions also didn't really help. This wasn't the case in the first two weeks. At the end I was able to complete all tests with 100% but only because I taught the material myself with the help of external websites.

von Christopher M R

•Jul 31, 2020

Audio is weak. Bendich is probably a good researcher, but not a good teacher. Doesn't make any effort to speak clearly, tone of voice is that the subject matter is beneath his genius, he's only "teaching" the course because Duke ordered him to teach it. Disappointed. I just copied down the curriculum then watched it on Khan. Sal Khan speaks clearly and covers the same boring 10 minute lecture in a lively half the time. Thanks anyway Coursera

von Stéphane F

•Jun 19, 2020

Don't waste your time with this. The first 3 weeks are insulting, teaching you basic highschool math (like what is "<", what is a function, etc.). The last week is more interesting as it gets to probabilities, and the quizzes are fun.

Reading materials are given and completely remove the need to look at the videos (pure waste of time). Formulas are given without any rigour.

von ChunChieh L

•Sep 20, 2019

一些非常基礎的高中數學，而且不完整。

課程一開始還會講解得比較細部，後面愈跳愈多。

對於有數學基礎的人來說根本不用浪費時間，對於沒有數學基礎的人來說，看了也沒辦法真的學到多少東西。

von Jimmy P

•Jun 30, 2020

I just finished the Data Science Math Skills on Coursera which is taught by Paul Bendich and Daniel Egger. Overall I learned a lot from this, but most of the stuff I learned already in Algebra class. For example, one thing that I already learned was the definition of infinite numbers on the number line.

One new thing I learned was about sets, which are a way to group numbers efficiently. It makes a big set of data easier to read and process. I also learned from this course is something called sigma notation, which is a way to solve a certain type of equation.

If this sounds really technical, don’t worry. Honestly, the course was less about doing math and more about learning how math is related to data science and some basic techniques and definitions.

Overall this course surprised me because I thought it was going to be a little boring, but it turned out alright. The only bad thing I would say about it is that Paul Bendich made a quite amount of errors in his lesson, causing Coursera to pause the video and edit it

von Rodrigo C

•May 21, 2020

The course overall was great. It was well taught-- very relevant and clear for the most part. I found the Probability lectures hard to follow. It seemed you need to know a lot of probability theory beforehand. Also the videos were too short in this sections and went very fast. The videos need to be longer, with 20-25 minutes and with more examples. The quizzes in this section were the hardest because not many examples were given in the lecture. Overall though I feel accomplished and feel I can tackle the math that comes my way when I pursue my data science degree. I will certainly recommend the course to my friends who wish to have better knowledge in mathematics for data science.

von Jennifer D C

•Apr 06, 2020

The course is a prerequisite for a Data Science course and its aim is to empowering your math skill :) With this purpouse, the course covers important mathematical topics; it can be used for advanced learners as a revision and a recap of fundamental subjects but someone may find it a little bit boring. I love maths so I really had enjoyed the course. For me, the last part (about probability, Bayes theorems, etc...) was the more challenging and interesting but I had also appreciated the first part with the funny explanations of prof. Bendich :) I think that the pdf companions are really useful to follow the lessons better.

von Christopher B

•Jul 06, 2020

The course has truly been helpful in showing me my level of understanding on the topics, as like all the other reviews it was a great refresher and more so it was truly helpful in helping me see areas i needed to improve on to become more advance in mathematics. i definitely recommend this course for those who want an understanding of the mathematics that is used in data science. this course by no means is an all you need math course to be successful with data science, but more of a stepping to stone or guide in my opinion in finding the right path to take to become far better in mathematics for this field.

von Mariana E

•Apr 08, 2018

Este curso lo recomiendo mucho a quienes estén interesados en refrescar sus conocimientos de matemáticas para pasar a cursos de estadística o data science. Es muy compacto por lo que los temas se tratan de manera concisa, pero realmente se avanza si se invierte el tiempo necesario. Yo estoy interesada en la estadística y mi campo es la lingüística, así que me tocó trabajar muchas horas haciendo cuentas en el papel y en la calculadora, buscando cómo hacer para sacar las distribuciones binomiales y las funciones básicas, pero me pareció al final que he dado grandes avances, me encantan las matemáticas.

von Laurent B

•Jun 19, 2017

While most of material is well known, it is presented in a great way, so it is a clean and smart refresher for Sets, basic Algebra and notations, Cartesian geometry and functions, and derivatives. I knew the material about logarithms, exponentials and probabilities, but I felt that I knew it better in the end of this courses. Material is great, and teachers are very clear. I wish they came with more material about calculus (matrices), vector spaces, Lagrangian, Hessian and so on, which are also really interesting in Data Sciences.

von Aditya K

•Sep 21, 2017

This course offers a great refresher of the FUNDAMENTALS of Linear Algebra , Calculus and Probability.

Do note the strong emphasis on fundamentals.

All lectures are well produced and the material put forward in an unambiguous and layman language.

The concepts presented are very easy to grasp , all thanks to the brilliant efforts of professor Bendich and professor Egger.

This course , along with another course on Calculus would serve as a great starting point for all data science enthusiasts and I strongly recommend it to everyone.

von Baskaran V

•Jan 15, 2017

One of the best course, i have ever learnt. Even though i have been learning the Data Science for the last few years, i had no idea how the algorithms are working in technical. Which i was always skeptical. But honestly, now i am able to get things really faster than before. I am very happy, i have joined this course. Thank you so much for coursera to bring this course and importantly thank you so much for the professors to explain things in an easy for the people to understand. God bless you both and your family.

von AB D

•Apr 18, 2020

I thoroughly enjoyed taking this course because of the effective syllabus that reviews the math skills for Data Science. I liked having both Test and Graded Quiz to check the understandings of the subject.

Test Quiz gives good feedback on both correct and incorrect answer that helps to compare the problem-solving strategy and solution of the students with the correct solution.

Graded Quiz gradually becomes more challenging and the week 4 graded quiz is the most challenging quiz of all the graded quizzes.

von Sanjai S

•May 15, 2020

I enjoyed the course content and lectures. The quizzes were a good test of understanding. I was wondering if there could have been a few more additional lectures and practice problems on probability. I request the team to check the answer to the 11th question on the last quiz of week 4.

Prof. Egger's lectures were very interesting and I only wish he had a larger writing board or apparatus. Thank you for getting me interested in a subject that is not my core area of work!

von Anurag G

•Jul 11, 2020

It was exactly what it said, math skills for the Data Science. Standard of problems kept increasing and became more and more challenging. I was able to finish the first 3 weeks in one day, because of my physics masters, I had previous Maths training, and that came handy. For the fourth week, the probability was extremely useful and challenging. I would recommend this to all future data scientist, especially if you are not coming from the Physical science background.

von Kianti S

•Jul 03, 2020

The learnings are very broad meaning, it is not only applicable in the field of data analytics but also in a the filed of mathematics, sciences, and statistics in my opinion. Thank you professor Daniel Egger and professor Paul Bendich for the amazing efforts, like for the amazing lectures and putting the step by step process of how to solve certain problems in your quizzes and also the of copies of the handouts which made my learning more conviniet.

von Mario C

•Jun 11, 2020

I never thought I could do math, that I just didn't get it. In this course I was doing math stuff that I considered was way above me. While I still have some difficulties with the more advanced concepts such as logs and "where to begin" with probabilities, I still have a foundation in these that I actually understand. Knowing my inadequacies I can go on and study those, but thank you so much for making an easily understandable course.

von Krishnendu S

•Jul 26, 2020

Excellent course for beginners. It starts from the basics and goes up to the intermediate level. Excellent short and very well explained videos and exceptionally good practice and graded questions. These questions help students to think deep into the matter and provide the necessary stimuli of in-depth learning. Great course. I am much obliged to Coursera, Duke University and the instructors for giving such an opportunity.

von Artiom C

•Apr 26, 2020

From 3 courses I've taken so far, this one was the best, because it covers a lot from basics to complex math. By the end of the course it does try to cover very complicated topics, which if you don't have training in, you will feel the need to supplement from another resources, even though the reading section of this course helps a lot. Lectures on Khan academy were also very helpful in remembering lost concepts.

- Sinn und Zweck im Leben finden
- Medizinische Forschung verstehen
- Japanisch für Anfänger
- Einführung in Cloud Computing
- Grundlagen der Achtsamkeit
- Grundlagen des Finanzwesens
- Maschinelles Lernen
- Maschinelles Lernen mittels Sas Viya
- Die Wissenschaft des Wohlbefindens
- Contact-Tracing im Kontext von COVID-19
- KI für alle
- Finanzmärkte
- Einführung in die Psychologie
- Erste Schritte mit AWS
- Internationales Marketing
- C++
- Predictive Analytics und Data-Mining
- UCSD: Learning How to Learn
- Michigan: Programming for Everybody
- JHU: R-Programmierung
- Google CBRS CPI Training

- Natural Language Processing (NLP)
- KI für Medizin
- Guter Umgang mit Worten: Redaktionelles Schreiben
- Modellbildung von Infektionskrankheiten
- Die Aussprache des US-amerikanischen Englisch
- Software-Testautomatisierung
- Deep Learning
- Python für alle
- Data Science
- Geschäftsgründungen
- Excel-Kenntnisse für Beruf
- Data Science mit Python
- Finance for Everyone
- Kommunikationsfähigkeiten für Ingenieure
- Verkaufstraining
- Career Brand Management
- Wharton: Unternehmensanalytik
- Penn: Positive Psychology
- Washington: Maschinelles Lernen
- CalArts: Grafikdesign

- Zertifikate über berufliche Qualifikation
- MasterTrack-Zertifizierungen
- Google IT-Support
- IBM Datenverarbeitung
- Google Cloud Data Engineering
- IBM Applied AI
- Google Cloud Architecture
- IBM Cybersecurity Analyst
- Google IT Automation with Python
- IBM z/OS Mainframe Practitioner
- UCI: Angewandtes Projektmanagement
- Zertifizierung in Instructional Design
- Zertifizierung in Bauwesen und -management
- Zertifizierung in Big Data
- Zertifizierung Maschinelles Lernen für Analytics
- Zertifizierung in Innovation Management & Entrepreneurship
- Zertifizierung in Nachhaltigkeit und Entwicklung
- Zertifizierung in Soziale Arbeit
- Zertifizierung KI und maschinelles Lernen
- Zertifizierung in Räumliche Datenanalyse und Visualisierung

- Abschlüsse in Informatik
- Business-Abschlüsse
- Abschlüsse im Gesundheitswesen
- Abschlüsse in Data Science
- Bachelorabschlüsse
- Bachelor of Computer Science
- MS Elektrotechnik
- Bachelor Completion Degree
- MS Management
- MS Informatik
- MPH
- Master-Abschluss in Buchhaltung
- MCIT
- MBA online
- Master of Applied Data Science
- Global MBA
- Master in Innovation & Entrepreneurship
- MCS Data Science
- Master in Informatik
- Master-Abschluss in Public Health