This course gives you an introduction to modeling methods and simulation tools for a wide range of natural phenomena. The different methodologies that will be presented here can be applied to very wide range of topics such as fluid motion, stellar dynamics, population evolution, ... This course does not intend to go deeply into any numerical method or process and does not provide any recipe for the resolution of a particular problem. It is rather a basic guideline towards different methodologies that can be applied to solve any kind of problem and help you pick the one best suited for you.
von
Simulation and modeling of natural processes
Universität von GenfÜber diesen Kurs
von

Universität von Genf
Founded in 1559, the University of Geneva (UNIGE) is one of Europe's leading universities. Devoted to research, education and dialogue, the UNIGE shares the international calling of its host city, Geneva, a centre of international and multicultural activities with a venerable cosmopolitan tradition.
Lehrplan - Was Sie in diesem Kurs lernen werden
Introduction and general concepts
This module gives an overview of the course and presents the general ideas about modeling and simulation. An emphasis is given on ways to represent space and time from a conceptual point of view. An insight of modeling of complex systems is given with the simulation of the grothw and thrombosis of giant aneurysms. Finally, a first class of modeling approaches is presented: the Monte-Carlo methods.
Introduction to programming with Python 3
This module intends to provide the most basic concepts of high performance computing used for modeling purposes. It also aims at teaching the basics of Python 3 which will be the programming language used for the quizzes in this course.
Dynamical systems and numerical integration
Dynamical systems modeling is the principal method developed to study time-space dependent problems. It aims at translating a natural phenomenon into a mathematical set of equations. Once this basic step is performed the principal obstacle is the actual resolution of the obtained mathematical problem. Usually these equations do not possess an analytical solution and advanced numerical methods must be applied to solve them. In this module you will learn the basics of how to write mathematical equations representing natural phenomena and then how to numerically solve them.
Cellular Automata
This module defines the concept of cellular automata by outlining the basic building blocks of this method. Then an insight of how to apply this technique to natural phenomena is given. Finally the lattice gas automata, a subclass of models used for fluid flows, is presented.
Bewertungen
- 5 stars48,56 %
- 4 stars34,82 %
- 3 stars9,26 %
- 2 stars3,83 %
- 1 star3,51 %
Top-Bewertungen von SIMULATION AND MODELING OF NATURAL PROCESSES
Extremely good course with excellent python codes for interesting applications
The course was nice and informative. Easily presented. But the last two weeks were difficult to grasp and not well delivered.
Very systematic and detailed introduction. Good way to start off into the science of simulation and modelling.
The first 6 weeks of the course very well done. Unfortunately, the last two weeks were not of the same quality as the remaining parts of the course.
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich das Zertifikat erwerbe?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.