Über dieses Spezialisierung
127,384 recent views

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.

Ca. 6 Monate zum Abschließen

Empfohlen werden 7 Stunden/Woche

Englisch

Untertitel: Englisch, Spanisch

Kompetenzen, die Sie erwerben

DebuggingSoftware TestingAlgorithmsData StructureComputer Programming

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.

Ca. 6 Monate zum Abschließen

Empfohlen werden 7 Stunden/Woche

Englisch

Untertitel: Englisch, Spanisch

So funktioniert das Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

how it works

Es gibt 6 Kurse in dieser Spezialisierung

Kurs1

Algorithmic Toolbox

4.7
4,740 Bewertungen
995 Bewertungen

The course covers basic algorithmic techniques and ideas for computational problems arising frequently in practical applications: sorting and searching, divide and conquer, greedy algorithms, dynamic programming. We will learn a lot of theory: how to sort data and how it helps for searching; how to break a large problem into pieces and solve them recursively; when it makes sense to proceed greedily; how dynamic programming is used in genomic studies. You will practice solving computational problems, designing new algorithms, and implementing solutions efficiently (so that they run in less than a second).

...
Kurs2

Datenstrukturen

4.7
2,083 Bewertungen
346 Bewertungen

A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this course, we consider the common data structures that are used in various computational problems. You will learn how these data structures are implemented in different programming languages and will practice implementing them in our programming assignments. This will help you to understand what is going on inside a particular built-in implementation of a data structure and what to expect from it. You will also learn typical use cases for these data structures. A few examples of questions that we are going to cover in this class are the following: 1. What is a good strategy of resizing a dynamic array? 2. How priority queues are implemented in C++, Java, and Python? 3. How to implement a hash table so that the amortized running time of all operations is O(1) on average? 4. What are good strategies to keep a binary tree balanced? You will also learn how services like Dropbox manage to upload some large files instantly and to save a lot of storage space!

...
Kurs3

Algorithms on Graphs

4.7
1,102 Bewertungen
182 Bewertungen

If you have ever used a navigation service to find optimal route and estimate time to destination, you've used algorithms on graphs. Graphs arise in various real-world situations as there are road networks, computer networks and, most recently, social networks! If you're looking for the fastest time to get to work, cheapest way to connect set of computers into a network or efficient algorithm to automatically find communities and opinion leaders in Facebook, you're going to work with graphs and algorithms on graphs. In this course, you will first learn what a graph is and what are some of the most important properties. Then you'll learn several ways to traverse graphs and how you can do useful things while traversing the graph in some order. We will then talk about shortest paths algorithms — from the basic ones to those which open door for 1000000 times faster algorithms used in Google Maps and other navigational services. You will use these algorithms if you choose to work on our Fast Shortest Routes industrial capstone project. We will finish with minimum spanning trees which are used to plan road, telephone and computer networks and also find applications in clustering and approximate algorithms.

...
Kurs4

Algorithms On Strings

4.5
576 Bewertungen
107 Bewertungen

World and internet is full of textual information. We search for information using textual queries, we read websites, books, e-mails. All those are strings from the point of view of computer science. To make sense of all that information and make search efficient, search engines use many string algorithms. Moreover, the emerging field of personalized medicine uses many search algorithms to find disease-causing mutations in the human genome.

...

Dozenten

Avatar

Daniel M Kane

Assistant Professor
Department of Computer Science and Engineering / Department of Mathematics
Avatar

Neil Rhodes

Adjunct Faculty
Computer Science and Engineering
Avatar

Pavel Pevzner

Professor
Department of Computer Science and Engineering
Avatar

Michael Levin

Lecturer
Computer Science
Avatar

Alexander S. Kulikov

Visiting Professor
Department of Computer Science and Engineering

Partner in der Branche

Industry Partner Logo #0
Industry Partner Logo #1
Industry Partner Logo #2

Über University of California San Diego

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Über National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Häufig gestellte Fragen

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • You will be able to apply the right algorithms and data structures in your day-to-day work and write programs that work in some cases many orders of magnitude faster. You'll be able to solve algorithmic problems like those used in the technical interviews at Google, Facebook, Microsoft, Yandex, etc. If you do data science, you'll be able to significantly increase the speed of some of your experiments. You'll also have a completed Capstone either in Bioinformatics or in the Shortest Paths in Road Networks and Social Networks that you can demonstrate to potential employers.

  • 1. Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala.

    We expect you to be able to implement programs that: 1) read data from the standard input (in most cases, the input is a sequence of integers); 2) compute the result (in most cases, a few loops are enough for this); 3) print the result to the standard output. For each programming challenge in this course, we provide starter solutions in C++, Java, and Python. The best way to check whether your programming skills are enough to go through problems in this specialization is to solve two problems from the first week. If you are able to pass them (after reading our tutorials), then you will definitely be able to pass the course.

    2. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.

    Knowledge of discrete mathematics is necessary for analyzing algorithms (proving correctness, estimating running time) and for algorithmic thinking in general. If you want to refresh your discrete mathematics skills, we encourage you to go through our partner specialization — Introduction to Discrete Mathematics for Computer Science (https://www.coursera.org/specializations/discrete-mathematics). It teaches the basics of discrete mathematics in try-this-before-we-explain-everything approach: you will be solving many interactive puzzles that were carefully designed to allow you to invent many of the important ideas and concepts yoursel

  • We believe that learning the theory behind algorithms (like in most Algorithms 101 courses taught at 1000s universities) is important but not sufficient for a professional computer scientist today. This specialization combines the theory of algorithms with many programming challenges. In contrast with many Algorithms 101 courses, you will implement over 100 algorithmic problems in the programming language of your choice. And you will see yourself that the best way to understand an algorithm is to implement it!

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 6-8 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • The lectures in this specialization will be self-contained. Most lectures will be based on the bestselling textbook "Algorithms" co-authored by Sanjoy Dasgupta from University of California at San Diego as well as Christos Papadimitriou and Umesh Vazirani from University of California at Berkeley. In addition to UCSD and Berkeley, the textbook has been adopted in over 100 top universities and is available on Internet.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..