Über dieses Spezialisierung
38,634 recent views

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

At least one year of programming experience, in any language.

Ca. 5 Monate zum Abschließen

Empfohlen werden 5 Stunden/Woche

Englisch

Untertitel: Englisch, Koreanisch, Serbisch, Französisch

Was Sie lernen werden

  • Check

    Write purely functional programs using recursion, pattern matching, and higher-order functions

  • Check

    Design immutable data structures

  • Check

    Write programs that effectively use parallel collections to achieve performance

  • Check

    Manipulate data with Spark and Scala

Kompetenzen, die Sie erwerben

Scala ProgrammingParallel ComputingApache SparkFunctional Programming

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

At least one year of programming experience, in any language.

Ca. 5 Monate zum Abschließen

Empfohlen werden 5 Stunden/Woche

Englisch

Untertitel: Englisch, Koreanisch, Serbisch, Französisch

So funktioniert das Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

how it works

Es gibt 5 Kurse in dieser Spezialisierung

Kurs1

Functional Programming Principles in Scala

4.8
6,350 Bewertungen
1,268 Bewertungen

Functional programming is becoming increasingly widespread in industry. This trend is driven by the adoption of Scala as the main programming language for many applications. Scala fuses functional and object-oriented programming in a practical package. It interoperates seamlessly with both Java and Javascript. Scala is the implementation language of many important frameworks, including Apache Spark, Kafka, and Akka. It provides the core infrastructure for sites such as Twitter, Tumblr and also Coursera. In this course you will discover the elements of the functional programming style and learn how to apply them usefully in your daily programming tasks. You will also develop a solid foundation for reasoning about functional programs, by touching upon proofs of invariants and the tracing of execution symbolically. The course is hands on; most units introduce short programs that serve as illustrations of important concepts and invite you to play with them, modifying and improving them. The course is complemented by a series programming projects as homework assignments. Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line.

...
Kurs2

Functional Program Design in Scala

4.5
2,631 Bewertungen
448 Bewertungen

In this course you will learn how to apply the functional programming style in the design of larger applications. You'll get to know important new functional programming concepts, from lazy evaluation to structuring your libraries using monads. We'll work on larger and more involved examples, from state space exploration to random testing to discrete circuit simulators. You’ll also learn some best practices on how to write good Scala code in the real world. Several parts of this course deal with the question how functional programming interacts with mutable state. We will explore the consequences of combining functions and state. We will also look at purely functional alternatives to mutable state, using infinite data structures or functional reactive programming. Learning Outcomes. By the end of this course you will be able to: - recognize and apply design principles of functional programs, - design functional libraries and their APIs, - competently combine functions and state in one program, - understand reasoning techniques for programs that combine functions and state, - write simple functional reactive applications. Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Programming Principles in Scala: https://www.coursera.org/learn/progfun1.

...
Kurs3

Parallel programming

4.5
1,558 Bewertungen
236 Bewertungen

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn the fundamentals of parallel programming, from task parallelism to data parallelism. In particular, you'll see how many familiar ideas from functional programming map perfectly to to the data parallel paradigm. We'll start the nuts and bolts how to effectively parallelize familiar collections operations, and we'll build up to parallel collections, a production-ready data parallel collections library available in the Scala standard library. Throughout, we'll apply these concepts through several hands-on examples that analyze real-world data, such as popular algorithms like k-means clustering. Learning Outcomes. By the end of this course you will be able to: - reason about task and data parallel programs, - express common algorithms in a functional style and solve them in parallel, - competently microbenchmark parallel code, - write programs that effectively use parallel collections to achieve performance Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Program Design in Scala: https://www.coursera.org/learn/progfun2.

...
Kurs4

Big Data Analysis with Scala and Spark

4.7
1,946 Bewertungen
399 Bewertungen

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1.

...

Dozenten

Avatar

Martin Odersky

Professor
Computer Science
Avatar

Prof. Viktor Kuncak

Associate Professor
School of Computer and Communication Sciences
Avatar

Dr. Julien Richard-Foy

Computer Scientist
Scala Center
Avatar

Dr. Aleksandar Prokopec

Principal Researcher
Oracle Labs
Avatar

Prof. Heather Miller

Assistant Professor
Carnegie Mellon University

Über École Polytechnique Fédérale de Lausanne

Häufig gestellte Fragen

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • Für diese Spezialisierung gibt es keine akademischen Leistungspunkte, doch Hochschulen können nach eigenem Ermessen Leistungspunkte für Spezialisierungszertifikate vergeben. Wenden Sie sich an Ihre Einrichtung, um mehr zu erfahren.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 4-5 months.

  • Each course in the Specialization is offered on demand, and may be taken at any time.

  • At least one year of programming experience is recommended. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, JavaScript, or Ruby is also sufficient.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • These courses are designed to be self-contained, however for further reading we recommend:(1) for a more thorough treatment of some of the ideas presented in the course: Structure and Interpretation of Computer Programs, 2nd Edition, by Harold Abelson,Gerald Jay Sussman //http://www.amazon.com/gp/product/0262011530?*Version*=1&*entries*=0...(2)for learning more about Scala: Programming in Scala: A Comprehensive Step-by-Step Guide, 2nd Edition, by Martin Odersky, Lex Spoon, Bill Venners // http://www.amazon.com/Programming-Scala-Comprehensive-Step-Step/dp/0981531644...(3)for learning more about Scala: Scala for the Impatient by Cay Horstmann // http://www.horstmann.com/scala/index.html...(4)for learning more about parallel and concurrent programming in Scala: Learning Concurrent Programming in Scala by Aleksandar Prokopec // http://www.amazon.com/Learning-Concurrent-Programming-Aleksandar-Prokopec/dp/1783281413...(5)for learning more about Spark: Learning Spark by Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia //http://shop.oreilly.com/product/0636920028512.do

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..