Über diesen Kurs
121,548 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Ca. 29 Stunden zum Abschließen

Empfohlen: 6 weeks, 8-10 hours per week...

Englisch

Untertitel: Englisch

Kompetenzen, die Sie erwerben

Binary ClassificationData AnalysisMicrosoft ExcelLinear Regression

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Ca. 29 Stunden zum Abschließen

Empfohlen: 6 weeks, 8-10 hours per week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
1 Stunde zum Abschließen

About This Course

This course will prepare you to design and implement realistic predictive models based on data. In the Final Project (module 6) you will assume the role of a business data analyst for a bank, and develop two different predictive models to determine which applicants for credit cards should be accepted and which rejected. Your first model will focus on minimizing default risk, and your second on maximizing bank profits. The two models should demonstrate to you in a practical, hands-on way the idea that your choice of business metric drives your choice of an optimal model.The second big idea this course seeks to demonstrate is that your data-analysis results cannot and should not aim to eliminate all uncertainty. Your role as a data-analyst is to reduce uncertainty for decision-makers by a financially valuable increment, while quantifying how much uncertainty remains. You will learn to calculate and apply to real-world examples the most important uncertainty measures used in business, including classification error rates, entropy of information, and confidence intervals for linear regression. All the data you need is provided within the course, and all assignments are designed to be done in MS Excel. The course will give you enough practice with Excel to become fluent in its most commonly used business functions, and you’ll be ready to learn any other Excel functionality you might need in future (module 1). The course does not cover Visual Basic or Pivot Tables and you will not need them to complete the assignments. All advanced concepts are demonstrated in individual Excel spreadsheet templates that you can use to answer relevant questions. You will emerge with substantial vocabulary and practical knowledge of how to apply business data analysis methods based on binary classification (module 2), information theory and entropy measures (module 3), and linear regression (module 4 and 5), all using no software tools more complex than Excel.

...
2 Videos (Gesamt 11 min), 2 Lektüren
2 Videos
Introduction to Mastering Data Analysis in Excel6m
2 Lektüren
Specialization Overview10m
Course Overview10m
2 Stunden zum Abschließen

Excel Essentials for Beginners

In this module, will explore the essential Excel skills to address typical business situations you may encounter in the future. The Excel vocabulary and functions taught throughout this module make it possible for you to understand the additional explanatory Excel spreadsheets that accompany later videos in this course.

...
8 Videos (Gesamt 52 min), 1 Lektüre, 2 Quiz
8 Videos
Basic Excel Vocabulary; Intro to Charting7m
Arithmetic in Excel2m
Functions on Individual Cells3m
Functions on a Set of Numbers10m
Functions on Ordered Pairs of Data8m
Sorting Data in Excel5m
Introduction to the Solver Plug-in8m
1 Lektüre
Tips for Success10m
2 praktische Übungen
Excel Essentials Practice30m
Excel Essentials30m
Woche
2
2 Stunden zum Abschließen

Binary Classification

Separating collections into two categories, such as “buy this stock, don’t but that stock” or “target this customer with a special offer, but not that one” is the ultimate goal of most business data-analysis projects. There is a specialized vocabulary of measures for comparing and optimizing the performance of the algorithms used to classify collections into two groups. You will learn how and why to apply these different metrics, including how to calculate the all-important AUC: the area under the Receiver Operating Characteristic (ROC) Curve.

...
6 Videos (Gesamt 46 min), 1 Lektüre, 2 Quiz
6 Videos
Bombers and Seagulls: Confusion Matrix8m
Costs Determine Optimal Threshold4m
Calculating Positive and Negative Predictive Values5m
How to Calculate the Area Under the ROC Curve11m
Binary Classification with More than One Input Variable7m
1 Lektüre
Tips for Success10m
2 praktische Übungen
Binary Classification (practice)30m
Binary Classification (graded)45m
Woche
3
2 Stunden zum Abschließen

Information Measures

In this module, you will learn how to calculate and apply the vitally useful uncertainty metric known as “entropy.” In contrast to the more familiar “probability” that represents the uncertainty that a single outcome will occur, “entropy” quantifies the aggregate uncertainty of all possible outcomes. The entropy measure provides the framework for accountability in data-analytic work. Entropy gives you the power to quantify the uncertainty of future outcomes relevant to your business twice: using the best-available estimates before you begin a project, and then again after you have built a predictive model. The difference between the two measures is the Information Gain contributed by your work.

...
7 Videos (Gesamt 42 min), 1 Lektüre, 2 Quiz
7 Videos
Probability and Entropy7m
Entropy of a Guessing Game7m
Dependence and Mutual Information3m
The Monty Hall Problem8m
Learning from One Coin Toss, Part 15m
Learning From One Coin Toss, Part 28m
1 Lektüre
Tips for Success10m
2 praktische Übungen
Using the Information Gain Calculator Spreadsheet (practice)30m
Information Measures (graded)45m
Woche
4
3 Stunden zum Abschließen

Linear Regression

The Linear Correlation measure is a much richer metric for evaluating associations than is commonly realized. You can use it to quantify how much a linear model reduces uncertainty. When used to forecast future outcomes, it can be converted into a “point estimate” plus a “confidence interval,” or converted into an information gain measure. You will develop a fluent knowledge of these concepts and the many valuable uses to which linear regression is put in business data analysis. This module also teaches how to use the Central Limit Theorem (CLT) to solve practical problems. The two topics are closely related because regression and the CLT both make use of a special family of probability distributions called “Gaussians.” You will learn everything you need to know to work with Gaussians in these and other contexts.

...
11 Videos (Gesamt 73 min), 1 Lektüre, 3 Quiz
11 Videos
Introduction to Standardization4m
Standard Normal Probability Distribution in Excel7m
Calculating Probabilities from Z-scores4m
Central Limit Theorem3m
Algebra with Gaussians6m
Markowitz Portfolio Optimization12m
Standardizing x and y Coordinates for Linear Regression6m
Standardization Simplifies Linear Regression9m
Modeling Error in Linear Regression10m
Information Gain from Linear Regression5m
1 Lektüre
Tips for Success10m
3 praktische Übungen
The Gaussian (practice)30m
Regression Models and PIG (practice)45m
Parametric Models for Regression (graded)45m
4.2
634 BewertungenChevron Right

28%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

25%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

Top reviews from Mastering Data Analysis in Excel

von JEOct 31st 2015

The course deserves a 5-star rating because: (1) content is relevant, (2) the professor is concise and possesses great teaching skills, and (3) the learning modules are applicable to daily problems.

von NCDec 20th 2016

Overall, the course material is good with many example. Need a general knowledge with mathematical and statistical from the beginning to pass the exam, because course slide is a little bit fast.

Dozenten

Avatar

Jana Schaich Borg

Assistant Research Professor
Social Science Research Institute
Avatar

Daniel Egger

Executive in Residence and Director, Center for Quantitative Modeling
Pratt School of Engineering, Duke University

Über Duke University

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

Über die Spezialisierung Excel to MySQL: Analytic Techniques for Business

Formulate data questions, explore and visualize large datasets, and inform strategic decisions. In this Specialization, you’ll learn to frame business challenges as data questions. You’ll use powerful tools and methods such as Excel, Tableau, and MySQL to analyze data, create forecasts and models, design visualizations, and communicate your insights. In the final Capstone Project, you’ll apply your skills to explore and justify improvements to a real-world business process. The Capstone Project focuses on optimizing revenues from residential property, and Airbnb, our Capstone’s official Sponsor, provided input on the project design. Airbnb is the world’s largest marketplace connecting property-owner hosts with travelers to facilitate short-term rental transactions. The top 10 Capstone completers each year will have the opportunity to present their work directly to senior data scientists at Airbnb live for feedback and discussion....
Excel to MySQL: Analytic Techniques for Business

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..