Über diesen Kurs
111,585

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala.

Ca. 28 Stunden zum Abschließen

Empfohlen: 4 weeks of study, 5-10 hours/week...

Englisch

Untertitel: Englisch

Kompetenzen, die Sie erwerben

Binary Search TreePriority QueueHash TableStack (Abstract Data Type)List

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala.

Ca. 28 Stunden zum Abschließen

Empfohlen: 4 weeks of study, 5-10 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
4 Stunden zum Abschließen

Basic Data Structures

In this module, you will learn about the basic data structures used throughout the rest of this course. We start this module by looking in detail at the fundamental building blocks: arrays and linked lists. From there, we build up two important data structures: stacks and queues. Next, we look at trees: examples of how they’re used in Computer Science, how they’re implemented, and the various ways they can be traversed. Once you’ve completed this module, you will be able to implement any of these data structures, as well as have a solid understanding of the costs of the operations, as well as the tradeoffs involved in using each data structure....
7 Videos (Gesamt 60 min), 7 Lektüren, 2 Quiz
7 Videos
Singly-Linked Lists9m
Doubly-Linked Lists4m
Stacks10m
Queues7m
Trees11m
Tree Traversal10m
7 Lektüren
Welcome10m
Slides and External References10m
Slides and External References10m
Slides and External References10m
Available Programming Languages10m
FAQ on Programming Assignments10m
Acknowledgements10m
1 praktische Übung
Basic Data Structures10m
Woche
2
1 Stunde zum Abschließen

Dynamic Arrays and Amortized Analysis

In this module, we discuss Dynamic Arrays: a way of using arrays when it is unknown ahead-of-time how many elements will be needed. Here, we also discuss amortized analysis: a method of determining the amortized cost of an operation over a sequence of operations. Amortized analysis is very often used to analyse performance of algorithms when the straightforward analysis produces unsatisfactory results, but amortized analysis helps to show that the algorithm is actually efficient. It is used both for Dynamic Arrays analysis and will also be used in the end of this course to analyze Splay trees....
5 Videos (Gesamt 31 min), 1 Lektüre, 1 Quiz
5 Videos
Amortized Analysis: Aggregate Method5m
Amortized Analysis: Banker's Method6m
Amortized Analysis: Physicist's Method7m
Amortized Analysis: Summary2m
1 Lektüre
Slides and External References10m
1 praktische Übung
Dynamic Arrays and Amortized Analysis8m
Woche
3
6 Stunden zum Abschließen

Priority Queues and Disjoint Sets

We start this module by considering priority queues which are used to efficiently schedule jobs, either in the context of a computer operating system or in real life, to sort huge files, which is the most important building block for any Big Data processing algorithm, and to efficiently compute shortest paths in graphs, which is a topic we will cover in our next course. For this reason, priority queues have built-in implementations in many programming languages, including C++, Java, and Python. We will see that these implementations are based on a beautiful idea of storing a complete binary tree in an array that allows to implement all priority queue methods in just few lines of code. We will then switch to disjoint sets data structure that is used, for example, in dynamic graph connectivity and image processing. We will see again how simple and natural ideas lead to an implementation that is both easy to code and very efficient. By completing this module, you will be able to implement both these data structures efficiently from scratch....
15 Videos (Gesamt 129 min), 6 Lektüren, 4 Quiz
15 Videos
Naive Implementations of Priority Queues5m
Binary Trees1m
Basic Operations12m
Complete Binary Trees9m
Pseudocode8m
Heap Sort10m
Building a Heap10m
Final Remarks4m
Overview7m
Naive Implementations10m
Trees for Disjoint Sets7m
Union by Rank9m
Path Compression6m
Analysis (Optional)18m
6 Lektüren
Slides10m
Tree Height Remark10m
Slides and External References10m
Slides and External References10m
Slides and External References10m
Slides and External References10m
3 praktische Übungen
Priority Queues: Quiz12m
Quiz: Disjoint Sets8m
Priority Queues and Disjoint Sets6m
Woche
4
6 Stunden zum Abschließen

Hash Tables

In this module you will learn about very powerful and widely used technique called hashing. Its applications include implementation of programming languages, file systems, pattern search, distributed key-value storage and many more. You will learn how to implement data structures to store and modify sets of objects and mappings from one type of objects to another one. You will see that naive implementations either consume huge amount of memory or are slow, and then you will learn to implement hash tables that use linear memory and work in O(1) on average! In the end, you will learn how hash functions are used in modern disrtibuted systems and how they are used to optimize storage of services like Dropbox, Google Drive and Yandex Disk!...
22 Videos (Gesamt 170 min), 4 Lektüren, 3 Quiz
22 Videos
Analysing Service Access Logs7m
Direct Addressing7m
List-based Mapping8m
Hash Functions3m
Chaining Scheme6m
Chaining Implementation and Analysis5m
Hash Tables6m
Phone Book Problem4m
Phone Book Problem - Continued6m
Universal Family9m
Hashing Integers9m
Proof: Upper Bound for Chain Length (Optional)8m
Proof: Universal Family for Integers (Optional)11m
Hashing Strings9m
Hashing Strings - Cardinality Fix7m
Search Pattern in Text7m
Rabin-Karp's Algorithm9m
Optimization: Precomputation9m
Optimization: Implementation and Analysis5m
Instant Uploads and Storage Optimization in Dropbox10m
Distributed Hash Tables12m
4 Lektüren
Slides and External References10m
Slides and External References10m
Slides and External References10m
Slides and External References10m
2 praktische Übungen
Hash Tables and Hash Functions8m
Hashing6m
Woche
5
2 Stunden zum Abschließen

Binary Search Trees

In this module we study binary search trees, which are a data structure for doing searches on dynamically changing ordered sets. You will learn about many of the difficulties in accomplishing this task and the ways in which we can overcome them. In order to do this you will need to learn the basic structure of binary search trees, how to insert and delete without destroying this structure, and how to ensure that the tree remains balanced....
7 Videos (Gesamt 55 min), 2 Lektüren, 1 Quiz
7 Videos
Search Trees5m
Basic Operations10m
Balance5m
AVL Trees5m
AVL Tree Implementation9m
Split and Merge9m
2 Lektüren
Slides and External References10m
Slides and External References10m
1 praktische Übung
Binary Search Trees20m
Woche
6
4 Stunden zum Abschließen

Binary Search Trees 2

In this module we continue studying binary search trees. We study a few non-trivial applications. We then study the new kind of balanced search trees - Splay Trees. They adapt to the queries dynamically and are optimal in many ways....
4 Videos (Gesamt 36 min), 2 Lektüren, 2 Quiz
4 Videos
Splay Trees: Introduction6m
Splay Trees: Implementation7m
(Optional) Splay Trees: Analysis10m
2 Lektüren
Slides and External References10m
Slides and External References10m
1 praktische Übung
Splay Trees6m
4.7
328 BewertungenChevron Right

32%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

37%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

11%

erhalten Sie eine Gehaltserhöhung oder Beförderung

Top-Bewertungen

von DGMay 24th 2016

I like this course very much! Rope is the cleverest task I have ever done! Of course, I hope in future I will work on even more difficult problems, but this is pretty good already for me as a student!

von TTApr 6th 2018

Data Structures was really interesting over all, also assignments are quite challenging. It's important to consult the external references & discussion forums if you want to get the best of it.

Dozenten

Avatar

Alexander S. Kulikov

Visiting Professor
Department of Computer Science and Engineering
Avatar

Michael Levin

Lecturer
Computer Science
Avatar

Daniel M Kane

Assistant Professor
Department of Computer Science and Engineering / Department of Mathematics
Avatar

Neil Rhodes

Adjunct Faculty
Computer Science and Engineering

Über University of California San Diego

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Über National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Über die Spezialisierung Datenstrukturen und Algorithmen

This specialization is a mix of theory and practice: you will learn algorithmic techniques for solving various computational problems and will implement about 100 algorithmic coding problems in a programming language of your choice. No other online course in Algorithms even comes close to offering you a wealth of programming challenges that you may face at your next job interview. To prepare you, we invested over 3000 hours into designing our challenges as an alternative to multiple choice questions that you usually find in MOOCs. Sorry, we do not believe in multiple choice questions when it comes to learning algorithms...or anything else in computer science! For each algorithm you develop and implement, we designed multiple tests to check its correctness and running time — you will have to debug your programs without even knowing what these tests are! It may sound difficult, but we believe it is the only way to truly understand how the algorithms work and to master the art of programming. The specialization contains two real-world projects: Big Networks and Genome Assembly. You will analyze both road networks and social networks and will learn how to compute the shortest route between New York and San Francisco (1000 times faster than the standard shortest path algorithms!) Afterwards, you will learn how to assemble genomes from millions of short fragments of DNA and how assembly algorithms fuel recent developments in personalized medicine....
Datenstrukturen und Algorithmen

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..