This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder.

Deep Learning Applications for Computer Vision
University of Colorado BoulderÜber diesen Kurs
Basic calculus (differentiation and integration), linear algebra
Was Sie lernen werden
Learners will be able to explain what Computer Vision is and give examples of Computer Vision tasks.
Learners will be able to describe the process behind classic algorithmic solutions to Computer Vision tasks and explain their pros and cons.
Learners will be able to use hands-on modern machine learning tools and python libraries.
Kompetenzen, die Sie erwerben
- Computer Vision
- Convolutional Neural Network
- Machine Learning
- Deep Learning
Basic calculus (differentiation and integration), linear algebra
Beginnen Sie damit, auf Ihren Master-Abschluss hinzuarbeiten.
Lehrplan - Was Sie in diesem Kurs lernen werden
Introduction and Background
Classic Computer Vision Tools
Image Classification in Computer Vision
Neural Networks and Deep Learning
Bewertungen
- 5 stars73,33 %
- 4 stars17,77 %
- 3 stars4,44 %
- 1 star4,44 %
Top-Bewertungen von DEEP LEARNING APPLICATIONS FOR COMPUTER VISION
Great introductory course on deep learning for computer vision.
Learnt many things and most exciting was Python code part
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich das Zertifikat erwerbe?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.