The course will teach you how to develop deep learning models using Pytorch. The course will start with Pytorch's tensors and Automatic differentiation package. Then each section will cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning will be covered. Finally, several other Deep learning methods will be covered.
von


Über diesen Kurs
Könnte Ihr Unternehmen von Mitarbeiterweiterbildungen für gefragte Kompetenzen profitieren?
Probieren Sie Coursera for Business ausKönnte Ihr Unternehmen von Mitarbeiterweiterbildungen für gefragte Kompetenzen profitieren?
Probieren Sie Coursera for Business ausLehrplan - Was Sie in diesem Kurs lernen werden
Tensor and Datasets
Linear Regression
Linear Regression PyTorch Way
Multiple Input Output Linear Regression
Logistic Regression for Classification
Softmax Rergresstion
Shallow Neural Networks
Bewertungen
- 5 stars64,26 %
- 4 stars23,02 %
- 3 stars5,73 %
- 2 stars3,95 %
- 1 star3,02 %
Top-Bewertungen von DEEP NEURAL NETWORKS WITH PYTORCH
In-depth course, goes in much more detail than the usual introductory courses, also emphasizes on practical hands on rather than theoretical knowledge
It was a very informative and interesting lecture. I learn a lot about the details when using PyTorch to build and train a deep neural network. I am so thankful.
Excellent Course. I love the way the course was presented. There were a lot of practical and visual examples explaining each module. It is highly recommended!
Very intensive course. Could do more training labs. But this is definitely a very dense course. Extremely helpful to get started on ML/Deep Learning.
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich dieses Zertifikat abonniere?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.