Über diesen Kurs
13,674

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 12 Stunden zum Abschließen

Empfohlen: Four weeks of study, 4-8 hours/week depending on past experience with sequential programming in Java...

Englisch

Untertitel: Englisch

Kompetenzen, die Sie erwerben

Distributed ComputingActor ModelParallel ComputingReactive Programming

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 12 Stunden zum Abschließen

Empfohlen: Four weeks of study, 4-8 hours/week depending on past experience with sequential programming in Java...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
1 Stunde zum Abschließen

Welcome to the Course!

Welcome to Distributed Programming in Java! This course is designed as a three-part series and covers a theme or body of knowledge through various video lectures, demonstrations, and coding projects....
1 Video (Gesamt 1 min), 5 Lektüren, 1 Quiz
1 Video
5 Lektüren
General Course Info5m
Course Icon Legend2m
Discussion Forum Guidelines2m
Pre-Course Survey10m
Mini Project 0: Setup20m
4 Stunden zum Abschließen

DISTRIBUTED MAP REDUCE

In this module, we will learn about the MapReduce paradigm, and how it can be used to write distributed programs that analyze data represented as key-value pairs. A MapReduce program is defined via user-specified map and reduce functions, and we will learn how to write such programs in the Apache Hadoop and Spark projects. TheMapReduce paradigm can be used to express a wide range of parallel algorithms. One example that we will study is computation of the TermFrequency – Inverse Document Frequency (TF-IDF) statistic used in document mining; this algorithm uses a fixed (non-iterative) number of map and reduce operations. Another MapReduce example that we will study is parallelization of the PageRank algorithm. This algorithm is an example of iterative MapReduce computations, and is also the focus of the mini-project associated with this module....
6 Videos (Gesamt 49 min), 6 Lektüren, 2 Quiz
6 Videos
1.2 Hadoop Framework8m
1.3 Spark Framework11m
1.4 TF-IDF Example7m
1.5 Page Rank Example8m
Demonstration: Page Rank Algorithm in Spark4m
6 Lektüren
1.1 Lecture Summary5m
1.2 Lecture Summary5m
1.3 Lecture Summary5m
1.4 Lecture Summary5m
1.5 Lecture Summary5m
Mini Project 1: Page Rank with Spark15m
1 praktische Übung
Module 1 Quiz30m
Woche
2
4 Stunden zum Abschließen

CLIENT-SERVER PROGRAMMING

In this module, we will learn about client-server programming, and how distributed Java applications can communicate with each other using sockets. Since communication via sockets occurs at the level of bytes, we will learn how to serialize objects into bytes in the sender process and to deserialize bytes into objects in the receiver process. Sockets and serialization provide the necessary background for theFile Server mini-project associated with this module. We will also learn about Remote Method Invocation (RMI), which extends the notion of method invocation in a sequential program to a distributed programming setting. Likewise, we will learn about multicast sockets,which generalize the standard socket interface to enable a sender to send the same message to a specified set of receivers; this capability can be very useful for a number of applications, including news feeds,video conferencing, and multi-player games. Finally, we will learn about distributed publish-subscribe applications, and how they can be implemented using the Apache Kafka framework....
6 Videos (Gesamt 43 min), 6 Lektüren, 2 Quiz
6 Videos
2.2 Serialization/Deserialization9m
2.3 Remote Method Invocation6m
2.4 Multicast Sockets7m
2.5 Publish-Subscribe Model6m
Demonstration: File Server using Sockets4m
6 Lektüren
2.1 Lecture Summary5m
2.2 Lecture Summary5m
2.3 Lecture Summary5m
2.4 Lecture Summary5m
2.5 Lecture Summary5m
Mini Project 2: File Server15m
1 praktische Übung
Module 2 Quiz30m
15 Minuten zum Abschließen

Talking to Two Sigma: Using it in the Field

Join Professor Vivek Sarkar as he talks with Two Sigma Managing Director, Jim Ward, and Senior Vice President, Dr. Eric Allen at their downtown Houston, Texas office about the importance of distributed programming....
2 Videos (Gesamt 13 min), 1 Lektüre
2 Videos
Industry Professional on Distribution - Dr. Eric Allen, Senior Vice President6m
1 Lektüre
About these Talks2m
Woche
3
4 Stunden zum Abschließen

MESSAGE PASSING

In this module, we will learn how to write distributed applications in the Single Program Multiple Data (SPMD) model, specifically by using the Message Passing Interface (MPI) library. MPI processes can send and receive messages using primitives for point-to-point communication, which are different in structure and semantics from message-passing with sockets. We will also learn about the message ordering and deadlock properties of MPI programs. Non-blocking communications are an interesting extension of point-to-point communications, since they can be used to avoid delays due to blocking and to also avoid deadlock-related errors. Finally, we will study collective communication, which can involve multiple processes in a manner that is more powerful than multicast and publish-subscribe operations. The knowledge of MPI gained in this module will be put to practice in the mini-project associated with this module on implementing a distributed matrix multiplication program in MPI....
6 Videos (Gesamt 49 min), 6 Lektüren, 2 Quiz
6 Videos
3.2 Point-to-Point Communication9m
3.3 Message Ordering and Deadlock8m
3.4 Non-Blocking Communications7m
3.5 Collective Communication7m
Demonstration: Distributed Matrix Multiply using Message Passing9m
6 Lektüren
3.1 Lecture Summary7m
3.2 Lecture Summary5m
3.3 Lecture Summary5m
3.4 Lecture Summary5m
3.5 Lecture Summary5m
Mini Project 3: Matrix Multiply in MPI15m
1 praktische Übung
Module 3 Quiz30m
Woche
4
4 Stunden zum Abschließen

COMBINING DISTRIBUTION AND MULTITHREADING

In this module, we will study the roles of processes and threads as basic building blocks of parallel, concurrent, and distributed Java programs. With this background, we will then learn how to implement multithreaded servers for increased responsiveness in distributed applications written using sockets, and apply this knowledge in the mini-project on implementing a parallel file server using both multithreading and sockets. An analogous approach can also be used to combine MPI and multithreading, so as to improve the performance of distributed MPI applications. Distributed actors serve as yet another example of combining distribution and multithreading. A notable property of the actor model is that the same high-level constructs can be used to communicate among actors running in the same process and among actors in different processes; the difference between the two cases depends on the application configuration, rather the application code. Finally, we will learn about the reactive programming model,and its suitability for implementing distributed service oriented architectures using asynchronous events....
6 Videos (Gesamt 44 min), 7 Lektüren, 2 Quiz
6 Videos
4.2 Multithreaded Servers6m
4.3 MPI and Threading7m
4.4 Distributed Actors8m
4.5 Distributed Reactive Programming7m
Demonstration: Parallel File Server using Multithreading and Sockets3m
7 Lektüren
4.1 Lecture Summary5m
4.2 Lecture Summary5m
4.3 Lecture Summary10m
4.4 Lecture Summary5m
4.5 Lecture Summary5m
Mini Project 4: Multi-Threaded File Server15m
Exit Survey10m
1 praktische Übung
Module 4 Quiz30m
20 Minuten zum Abschließen

Continue Your Journey with the Specialization "Parallel, Concurrent, and Distributed Programming in Java"

The next two videos will showcase the importance of learning about Parallel Programming and Concurrent Programming in Java. Professor Vivek Sarkar will speak with industry professionals at Two Sigma about how the topics of our other two courses are utilized in the field....
2 Videos (Gesamt 10 min), 1 Lektüre
2 Videos
Industry Professional on Concurrency - Dr. Shams Imam, Software Engineer, Two Sigma3m
1 Lektüre
Our Other Course Offerings10m
4.5
30 BewertungenChevron Right

25%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

29%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

33%

erhalten Sie eine Gehaltserhöhung oder Beförderung

Top-Bewertungen

von DHSep 17th 2017

Great course. The first programming assignment was challenging and well worth the time invested, I would recommend it for anyone that wants to learn parallel programming in Java.

von FFJan 24th 2018

Excellent course! Vivek is an excellent instructor as well. I appreciate having taken the opportunity to learn from him.

Dozent

Avatar

Vivek Sarkar

Professor
Department of Computer Science

Über Rice University

Rice University is consistently ranked among the top 20 universities in the U.S. and the top 100 in the world. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy....

Über die Spezialisierung Parallel, Concurrent, and Distributed Programming in Java

Parallel, concurrent, and distributed programming underlies software in multiple domains, ranging from biomedical research to financial services. This specialization is intended for anyone with a basic knowledge of sequential programming in Java, who is motivated to learn how to write parallel, concurrent and distributed programs. Through a collection of three courses (which may be taken in any order or separately), you will learn foundational topics in Parallelism, Concurrency, and Distribution. These courses will prepare you for multithreaded and distributed programming for a wide range of computer platforms, from mobile devices to cloud computing servers. To see an overview video for this Specialization, click here! For an interview with two early-career software engineers on the relevance of parallel computing to their jobs, click here. Acknowledgments The instructor, Prof. Vivek Sarkar, would like to thank Dr. Max Grossman for his contributions to the mini-projects and other course material, Dr. Zoran Budimlic for his contributions to the quizzes, Dr. Max Grossman and Dr. Shams Imam for their contributions to the pedagogic PCDP library used in some of the mini-projects, and all members of the Rice Online team who contributed to the development of the course content (including Martin Calvi, Annette Howe, Seth Tyger, and Chong Zhou)....
Parallel, Concurrent, and Distributed Programming in Java

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

  • No. The lecture videos, demonstrations and quizzes will be sufficient to enable you to complete this course. Students who enroll in the course and are interesting in receiving a certificate will also have access to a supplemental coursebook with additional technical details.

  • Multicore Programming in Java: Parallelism and Multicore Programming in Java: Concurrency cover complementary aspects of multicore programming, and can be taken in any order. The Parallelism course covers the fundamentals of using parallelism to make applications run faster by using multiple processors at the same time. The Concurrency course covers the fundamentals of how parallel tasks and threads correctly mediate concurrent use of shared resources such as shared objects, network resources, and file systems.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..