Über diesen Kurs
597,852 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Experience in Python coding and high school-level math is required. Prior machine learning or deep learning knowledge is helpful but not required.

Ca. 8 Stunden zum Abschließen

Empfohlen: 4 weeks, 4-5 hours/week...

Englisch

Untertitel: Englisch

Was Sie lernen werden

  • Check

    Learn best practices for using TensorFlow, a popular open-source machine learning framework

  • Check

    Build a basic neural network in TensorFlow

  • Check

    Train a neural network for a computer vision application

  • Check

    Understand how to use convolutions to improve your neural network

Kompetenzen, die Sie erwerben

Computer VisionTensorflowMachine Learning

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Experience in Python coding and high school-level math is required. Prior machine learning or deep learning knowledge is helpful but not required.

Ca. 8 Stunden zum Abschließen

Empfohlen: 4 weeks, 4-5 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
3 Stunden zum Abschließen

A New Programming Paradigm

Welcome to this course on going from Basics to Mastery of TensorFlow. We're excited you're here! In week 1 you'll get a soft introduction to what Machine Learning and Deep Learning are, and how they offer you a new programming paradigm, giving you a new set of tools to open previously unexplored scenarios. All you need to know is some very basic programming skills, and you'll pick the rest up as you go along. To get started, check out the first video, a conversation between Andrew and Laurence that sets the theme for what you'll study...

...
4 Videos (Gesamt 16 min), 5 Lektüren, 3 Quiz
4 Videos
A primer in machine learning3m
The ‘Hello World’ of neural networks5m
Working through ‘Hello World’ in TensorFlow and Python3m
5 Lektüren
Learner Support10m
From rules to data10m
Try it for yourself10m
Introduction to Google Colaboratory10m
Week 1 Resources10m
1 praktische Übung
Week 1 Quiz
Woche
2
4 Stunden zum Abschließen

Introduction to Computer Vision

Welcome to week 2 of the course! In week 1 you learned all about how Machine Learning and Deep Learning is a new programming paradigm. This week you’re going to take that to the next level by beginning to solve problems of computer vision with just a few lines of code! Check out this conversation between Laurence and Andrew where they discuss it and introduce you to Computer Vision!

...
7 Videos (Gesamt 15 min), 6 Lektüren, 3 Quiz
7 Videos
An Introduction to computer vision2m
Writing code to load training data2m
Coding a Computer Vision Neural Network2m
Walk through a Notebook for computer vision3m
Using Callbacks to control training1m
Walk through a notebook with Callbacks1m
6 Lektüren
Exploring how to use data10m
The structure of Fashion MNIST data10m
See how it's done10m
Get hands-on with computer vision1h
See how to implement Callbacks10m
Week 2 Resources10m
1 praktische Übung
Week 2 Quiz
Woche
3
5 Stunden zum Abschließen

Enhancing Vision with Convolutional Neural Networks

Welcome to week 3! In week 2 you saw a basic Neural Network for Computer Vision. It did the job nicely, but it was a little naive in its approach. This week we’ll see how to make it better, as discussed by Laurence and Andrew here.

...
6 Videos (Gesamt 19 min), 6 Lektüren, 3 Quiz
6 Videos
What are convolutions and pooling?2m
Implementing convolutional layers1m
Implementing pooling layers4m
Improving the Fashion classifier with convolutions4m
Walking through convolutions3m
6 Lektüren
Coding convolutions and pooling layers10m
Learn more about convolutions10m
Getting hands-on, your first ConvNet10m
Try it for yourself1h
Experiment with filters and pools1h
Week 3 Resources10m
1 praktische Übung
Week 3 Quiz
Woche
4
6 Stunden zum Abschließen

Using Real-world Images

Last week you saw how to improve the results from your deep neural network using convolutions. It was a good start, but the data you used was very basic. What happens when your images are larger, or if the features aren’t always in the same place? Andrew and Laurence discuss this to prepare you for what you’ll learn this week: handling complex images!

...
9 Videos (Gesamt 27 min), 10 Lektüren, 3 Quiz
9 Videos
Understanding ImageGenerator4m
Defining a ConvNet to use complex images2m
Training the ConvNet with fit_generator2m
Walking through developing a ConvNet2m
Walking through training the ConvNet with fit_generator3m
Adding automatic validation to test accuracy4m
Exploring the impact of compressing images3m
Outro: A conversation with Andrew1m
10 Lektüren
Explore an impactful, real-world solution10m
Designing the neural network10m
Train the ConvNet with ImageGenerator10m
Exploring the solution10m
Training the neural network10m
Experiment with the horse or human classifier1h
Get hands-on and use validation30m
Get Hands-on with compacted images30m
Week 4 Resources10m
Outro10m
1 praktische Übung
Week 4 Quiz
4.7
445 BewertungenChevron Right

44%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

42%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

12%

erhalten Sie eine Gehaltserhöhung oder Beförderung

Top reviews from Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning

von ASMar 9th 2019

Good intro course, but google colab assignments need to be improved. And submitting a jupyter notebook was much more easier, why would I want to login to my google account to be a part of this course?

von AWJun 7th 2019

An awesome practical course that helps me to start creating my first neural networks using keras in such great methods, the instructor is very good at delivering the knowledge he has\n\n.

Dozent

Avatar

Laurence Moroney

AI Advocate
Google Brain

Über deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Über die Spezialisierung TensorFlow in Practice

Discover the tools software developers use to build scalable AI-powered algorithms in TensorFlow, a popular open-source machine learning framework. In this four-course Specialization, you’ll explore exciting opportunities for AI applications. Begin by developing an understanding of how to build and train neural networks. Improve a network’s performance using convolutions as you train it to identify real-world images. You’ll teach machines to understand, analyze, and respond to human speech with natural language processing systems. Learn to process text, represent sentences as vectors, and input data to a neural network. You’ll even train an AI to create original poetry! AI is already transforming industries across the world. After finishing this Specialization, you’ll be able to apply your new TensorFlow skills to a wide range of problems and projects. Courses 1-3 are available now, with Course 4 launching in July....
TensorFlow in Practice

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..