Über diesen Kurs
243,404

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Course 1 of the TensorFlow Specialization, Python coding, and high-school level math are required. ML/DL experience is helpful but not required.

Ca. 6 Stunden zum Abschließen

Empfohlen: 4 weeks of study, 4-5 hours/week...

Englisch

Untertitel: Englisch

Was Sie lernen werden

  • Check

    Handle real-world image data

  • Check

    Plot loss and accuracy

  • Check

    Explore strategies to prevent overfitting, including augmentation and dropout

  • Check

    Learn transfer learning and how learned features can be extracted from models

Kompetenzen, die Sie erwerben

Inductive TransferAugmentationDropoutsMachine LearningTensorflow

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Course 1 of the TensorFlow Specialization, Python coding, and high-school level math are required. ML/DL experience is helpful but not required.

Ca. 6 Stunden zum Abschließen

Empfohlen: 4 weeks of study, 4-5 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
4 Stunden zum Abschließen

Exploring a Larger Dataset

In the first course in this specialization, you had an introduction to TensorFlow, and how, with its high level APIs you could do basic image classification, an you learned a little bit about Convolutional Neural Networks (ConvNets). In this course you'll go deeper into using ConvNets will real-world data, and learn about techniques that you can use to improve your ConvNet performance, particularly when doing image classification! In Week 1, this week, you'll get started by looking at a much larger dataset than you've been using thus far: The Cats and Dogs dataset which had been a Kaggle Challenge in image classification!...
8 Videos (Gesamt 18 min), 6 Lektüren, 3 Quiz
8 Videos
A conversation with Andrew Ng1m
Training with the cats vs. dogs dataset2m
Working through the notebook4m
Fixing through cropping49
Visualizing the effect of the convolutions1m
Looking at accuracy and loss1m
Week 1 Outro33
6 Lektüren
Before you Begin: TensorFlow 2.0 and this Course10m
The cats vs dogs dataset10m
Looking at the notebook10m
What you'll see next10m
What have we seen so far?10m
Getting ready for the exercise10m
1 praktische Übung
Week 1 Quiz30m
Woche
2
4 Stunden zum Abschließen

Augmentation: A technique to avoid overfitting

You've heard the term overfitting a number of times to this point. Overfitting is simply the concept of being over specialized in training -- namely that your model is very good at classifying what it is trained for, but not so good at classifying things that it hasn't seen. In order to generalize your model more effectively, you will of course need a greater breadth of samples to train it on. That's not always possible, but a nice potential shortcut to this is Image Augmentation, where you tweak the training set to potentially increase the diversity of subjects it covers. You'll learn all about that this week!...
7 Videos (Gesamt 14 min), 7 Lektüren, 3 Quiz
7 Videos
Introducing augmentation2m
Coding augmentation with ImageDataGenerator3m
Demonstrating overfitting in cats vs. dogs1m
Adding augmentation to cats vs. dogs1m
Exploring augmentation with horses vs. humans1m
Week 2 Outro37
7 Lektüren
Image Augmentation10m
Start Coding...10m
Looking at the notebook10m
The impact of augmentation on Cats vs. Dogs10m
Try it for yourself!10m
What have we seen so far?10m
Getting ready for the exercise10m
1 praktische Übung
Week 2 Quiz30m
Woche
3
4 Stunden zum Abschließen

Transfer Learning

Building models for yourself is great, and can be very powerful. But, as you've seen, you can be limited by the data you have on hand. Not everybody has access to massive datasets or the compute power that's needed to train them effectively. Transfer learning can help solve this -- where people with models trained on large datasets train them, so that you can either use them directly, or, you can use the features that they have learned and apply them to your scenario. This is Transfer learning, and you'll look into that this week!...
7 Videos (Gesamt 14 min), 6 Lektüren, 3 Quiz
7 Videos
Understanding transfer learning: the concepts2m
Coding transfer learning from the inception mode1m
Coding your own model with transferred features2m
Exploring dropouts1m
Exploring Transfer Learning with Inception1m
Week 3 Outro36
6 Lektüren
Start coding!10m
Adding your DNN10m
Using dropouts!10m
Applying Transfer Learning to Cats v Dogs10m
What have we seen so far?10m
Getting ready for the exercise10m
1 praktische Übung
Week 3 Quiz30m
Woche
4
4 Stunden zum Abschließen

Multiclass Classifications

You've come a long way, Congratulations! One more thing to do before we move off of ConvNets to the next module, and that's to go beyond binary classification. Each of the examples you've done so far involved classifying one thing or another -- horse or human, cat or dog. When moving beyond binary into Categorical classification there are some coding considerations you need to take into account. You'll look at them this week!...
6 Videos (Gesamt 12 min), 6 Lektüren, 3 Quiz
6 Videos
Moving from binary to multi-class classification44
Explore multi-class with Rock Paper Scissors dataset2m
Train a classifier with Rock Paper Scissors1m
Test the Rock Paper Scissors classifier2m
Outro, A conversation with Andrew Ng1m
6 Lektüren
Introducing the Rock-Paper-Scissors dataset10m
Check out the code!10m
Try testing the classifier10m
What have we seen so far?10m
Getting ready for the exercise10m
Outro10m
1 praktische Übung
Week 4 Quiz30m
4.8
21 BewertungenChevron Right

Top-Bewertungen

von MHMay 24th 2019

A very comprehensive and easy to learn course on Tensor Flow. I am really impressed by the Instructor ability to teach difficult concept with ease. I will look forward another course of this series.

von CMMay 1st 2019

A patient and coherent introduction. At the end, you have good working code you can use elsewhere. Remarkably, the primary lecturer, Laurence Moroney, responds fairly quickly to posts in the forum.

Dozent

Avatar

Laurence Moroney

AI Advocate
Google Brain

Über deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie ein Zertifikat erwerben, erhalten Sie Zugriff auf alle Kursmaterialien, einschließlich bewerteter Aufgaben. Nach Abschluss des Kurses wird Ihr elektronisches Zertifikat zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..