Chevron Left
Zurück zu Machine Learning: Classification

Kursteilnehmer-Bewertung und -Feedback für Machine Learning: Classification von University of Washington

4.7
Sterne
3,375 Bewertungen
562 Bewertungen

Über den Kurs

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

Top-Bewertungen

SM

Jun 15, 2020

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

Oct 16, 2016

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

Filtern nach:

251 - 275 von 531 Bewertungen für Machine Learning: Classification

von Cosmos D I

Mar 29, 2020

This course is very informational!

von Alessandro B

Oct 31, 2017

nice, clear engaging ...and useful

von 易灿

Nov 28, 2016

课程很生动,讲的很详细,真心谢谢导师!希望能在算法后面多提供点资料!

von Henry H

Nov 18, 2016

Very clear and easy to understand.

von Albert V d M

Mar 08, 2016

Very instructive, you learn a lot.

von Angel S

Mar 08, 2016

Awesome. Waiting for the next one.

von Jing

Aug 14, 2017

Better than the regression course

von Rishabh J

Dec 19, 2016

Amazing course, Amazing teaching.

von CHERUKURI S V N K

May 29, 2020

IT WAS EXCELLENT AND ENJOYED IT.

von Fernando B

Feb 21, 2017

Best Course on ML yet on the Web

von Pranas B

Jul 01, 2016

Good practice and bit of theory.

von Andrew M O

Jun 15, 2016

I came here to learn. I learned.

von zhenyue z

Jun 03, 2016

good lecture, good for everyone.

von Manuel T F

Jul 21, 2017

Really great course. Well done!

von TONGHONG C

Jun 14, 2017

Best ML course I've ever taken!

von Sandeep K S

May 07, 2016

awesome course awesome teachers

von Vijai K S

Mar 05, 2016

Heck yeah!! its finally here :D

von Vinothkumar

Jul 11, 2020

Very useful learning platform.

von Jinho L

Jul 20, 2016

Very pragmatic and interesting

von Snehotosh K B

Mar 20, 2016

Excellent and very intuitive.

von Neemesh J

Oct 28, 2019

Awesome learning experience.

von Fan J

Aug 04, 2019

good content, help me a lot!

von Mike M

Jul 16, 2016

Learned a lot, great course!

von Dwayne E

Dec 21, 2016

Awesome course learned alot

von Rui W

Sep 13, 2016

So cool and much practical.