Cette formation vous apprendra à construire des modèles pour le langage naturel, l’audio et les autres données de séquence. Grâce à l’apprentissage profond, les algorithmes de séquence fonctionnent beaucoup mieux qu’il y a deux ans ; nous disposons donc de nombreuses applications très intéressantes en matière de reconnaissance vocale, de synthèse musicale, de chatbots, de traduction automatique, de compréhension naturelle du langage, etc.

Modèles de séquence
deeplearning.aiÜber diesen Kurs
Kompetenzen, die Sie erwerben
- Machine Translation
- Word Embedding
- Combination
- Deep Learning
von

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.
Lehrplan - Was Sie in diesem Kurs lernen werden
Réseaux neuronaux récurrents
Découvrez les réseaux neuronaux récurrents. Ce type de modèle s’est avéré extrêmement performant sur les données temporelles. Il comporte plusieurs variantes, y compris les LSTM, les GRU et les RNN bidirectionnels, que vous allez découvrir dans cette section.
Traitement automatique du langage naturel et prolongements lexicaux
Le traitement du langage naturel avec l'apprentissage profond est une combinaison importante. En utilisant des représentations de vecteurs de mots et des couches de prolongements, vous pouvez former des réseaux neuronaux récurrents avec des performances exceptionnelles, dans une grande variété de secteurs. Des exemples d’applications sont l’analyse de sentiments, la reconnaissance d’entités nommées et la traduction automatique.
Modèles de séquence et mécanisme d’attention
Les modèles de séquence peuvent être améliorés à l’aide d’un mécanisme d’attention. Cet algorithme aidera votre modèle à comprendre où celui-ci doit focaliser son attention, compte tenu d’une séquence d’entrées. Cette semaine, vous apprendrez également à reconnaître la parole et à gérer les données audio.
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich das Zertifikat erwerbe?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.