Classification of COVID19 using Chext X-ray Images in Keras

4.6
Sterne
23 Bewertungen
von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Learn to Build and Train the Convolutional Neural Network using Keras with Tensorflow as Backend

Learn to Visualize Data in Matplotlib

Learn to make use of the Trained Model to Predict on a New Set of Data

Clock2 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1 hour long project-based course, you will learn to build and train a convolutional neural network in Keras with TensorFlow as backend from scratch to classify patients as infected with COVID or not using their chest x-ray images. Our goal is to create an image classifier with Tensorflow by implementing a CNN to differentiate between chest x rays images with a COVID 19 infections versus without. The dataset contains the lungs X-ray images of both groups.We will be carrying out the entire project on the Google Colab environment. Please be aware of the fact that the dataset and the model in this project, can not be used in the real-life. We are only using this data for educational purposes. By the end of this project, you will be able to build and train the convolutional neural network using Keras with TensorFlow as a backend. You will also be able to perform data visualization. Additionally, you will also be able to use the model to make predictions on new data. You should be familiar with the Python Programming language and you should have a theoretical understanding of Convolutional Neural Networks. You will need a free Gmail account to complete this project. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Data Science
  • Deep Learning
  • Convolutional Neural Network
  • Python Programming
  • Keras/ Tensorflow

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Introduction & Import Libraries

  2. Clone and Explore Dataset

  3. Data Visualization

  4. Data preprocessing and Augmentation

  5. Build a Convolutional Neural Network (CNN)

  6. Compile and Train the Model

  7. Performance Evaluation

  8. Prediction on New Data

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von CLASSIFICATION OF COVID19 USING CHEXT X-RAY IMAGES IN KERAS

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.