Compare Models with Experiments in Azure ML Studio

Log plots in experiments
Log numeric metrics in experiments
Visualize metrics in Azure Machine Learning Studio
Log plots in experiments
Log numeric metrics in experiments
Visualize metrics in Azure Machine Learning Studio
Did you know that you can compare models in Azure Machine Learning? In this 1-hour project-based course, you will learn how to log plots in experiments, log numeric metrics in experiments and visualize metrics in Azure Machine Learning Studio. To achieve this, we will use one example data, train a couple of machine learning algorithms in Jupyter notebook and visualize their results in Azure Machine Learning Studio Portal interface. In order to be successful in this project, you will need knowledge of Python language and experience with machine learning in Python. Also, Azure subscription is required (free trial is an option for those who don’t have it), as well as Azure Machine Learning resource and a compute instance within. Instructional links will be provided to guide you through creation, if needed, in the first task. If you are ready to make your experience training models simpler and more enjoyable, this is a course for you! Let’s get started!
In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:
Prepare files in Azure ML Studio for using different ml algorithms
Prepare Jupyter notebook for working with Azure experiments
Create logs for metrics and images for Linear Regression
Azure experiment basics in Python
Create logs for metrics and images for different algorithms
Create visualizations of metrics in Azure Machine Learning Studio Portal
Capstone challenge: Log metrics for Random forest approach and compare with previous results
Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich
Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.
Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.
Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.
Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.
Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.
Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.
Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.
Für angeleitete Projekte ist kein Auditing verfügbar.
Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.
Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.
Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.