Decision Tree Classifier for Beginners in R

von
In diesem angeleitetes Projekt werden Sie:

Understand the concept of the decision tree algorithm

Build decision tree models

Evaluate the performance of the model

2 hours
Anfänger
Kein Download erforderlich
Video auf geteiltem Bildschirm
Englisch
Nur Desktop

Welcome to this project-based course Decision Tree Classifier for Beginners in R. This is a hands-on project that introduces beginners to the world of statistical modeling. In this project, you will learn how to build decision tree models using the tree and rpart libraries in R. We will start this hands-on project by importing the Sonar data into R and exploring the dataset. By the end of this 2-hour long project, you will understand the basic intuition behind the decision tree algorithm and how it works. To build the model, we will divide or partition the data into the training and testing data set. Finally, you will learn how to evaluate the model’s performance using metrics like Accuracy, Sensitivity, Specificity, F1-Score, and so on. By extension, you will learn how to save the trained model on your local system. Although you do not need to be a data analyst expert or data scientist to succeed in this guided project, it requires a basic knowledge of using R, especially writing R syntaxes. Therefore, to complete this project, you must have prior experience with using R. If you are not familiar with working with using R, please go ahead to complete my previous project titled: “Getting Started with R”. It will hand you the needed knowledge to go ahead with this project on Decision Tree. However, if you are comfortable with working with R, please join me on this beautiful ride! Let’s get our hands dirty!

Kompetenzen, die Sie erwerben werden

  • Predictive Modelling

  • Decision Tree

  • Machine Learning

  • Statistical Classification

  • Accuracy And Precision

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Getting Started

  2. Import Required Packages

  3. Import and Explore Dataset

  4. Create Train and Test Sets

  5. Train the decision tree model

  6. Evaluating Model Performance

  7. Wrap up

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.

Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.

Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.

Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.

Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.

Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.

Für angeleitete Projekte ist kein Auditing verfügbar.

Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.

Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.

Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.