Interpretable machine learning applications: Part 3

Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Import, explore and normalize real world data (HELOC) for evaluating the risk performance of mortgage applications

Train and test a prediction model as a Sequential model based Artificial Neural Network (ANN)

Generate explanations based on profiles of mortgage applicants closest to the individual requesting the explanation.

Clock2 hours
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 50 minutes long project-based course, you will learn how to apply a specific explanation technique and algorithm for predictions (classifications) being made by inherently complex machine learning models such as artificial neural networks. The explanation technique and algorithm is based on the retrieval of similar cases with those individuals for which we wish to provide explanations. Since this explanation technique is model agnostic and treats the predictions model as a 'black-box', the guided project can be useful for decision makers within business environments, e.g., loan officers at a bank, and public organizations interested in using trusted machine learning applications for automating, or informing, decision making processes. The main learning objectives are as follows: Learning objective 1: You will be able to define, train and evaluate an artificial neural network (Sequential model) based classifier  by using keras as API for TensorFlow. The pediction model will be trained and tested with the HELOC dataset for approved and rejected mortgage applications. Learning objective 2: You will be able to generate explanations based on similar profiles for a mortgage applicant predicted either as of "Good" or "Bad" risk performance. Learning objective 3: you will be able to generate contrastive explanations based on feature and pertinent negative values, i.e., what an applicant should change in order to turn a "rejected" application to an "approved" one.

Kompetenzen, die Sie erwerben werden

  • Training and testing an Artificial Neural Network
  • Using the Protodash algorithm
  • Using keras as API for TensorFlow
  • Normalization of data prior to training a prediction model
  • Explanations based on similarity measurements

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. By the end of task 1, you will be able, as a data scientist or loan officer persona, to load, process and normalize the (HELOC) dataset about mortgage applications for training purposes.

  2. By the end of task 2, you will be able to define, train and evaluate an artificial neural network based classifier  by using TensorFlow.

  3. By the end of tasks 3 and 4, you will be able to obtain similar samples as explanations for a mortgage applicant predicted as "Good" and "Bad", respectively.

  4. By the end of task 5, you will be able to provide contrastive explanations for decisions affecting individual cases.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.