Logistic Regression with NumPy and Python

4.5
Sterne
343 Bewertungen
von
Coursera Project Network
10,128 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Implement the gradient descent algorithm from scratch

Perform logistic regression with NumPy and Python

Create data visualizations with Matplotlib and Seaborn

Clock1.5 hours
BeginnerAnfänger
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

Kompetenzen, die Sie erwerben werden

Data ScienceMachine LearningPython ProgrammingclassificationNumpy

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Introduction and Project Overview

  2. Load the Data and Import Libraries

  3. Visualize the Data

  4. Define the Logistic Sigmoid Function 𝜎(𝑧)

  5. Compute the Cost Function 𝐽(𝜃) and Gradient

  6. Cost and Gradient at Initialization

  7. Implement Gradient Descent

  8. Plotting the Convergence of 𝐽(𝜃)

  9. Plotting the Decision Boundary

  10. Predictions Using the Optimized 𝜃 Values

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von LOGISTIC REGRESSION WITH NUMPY AND PYTHON

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..