Chevron Left
Zurück zu Predicting Credit Card Fraud with R

Bewertung und Feedback des Lernenden für Predicting Credit Card Fraud with R von University of North Texas

4.5
Sterne
27 Bewertungen

Über den Kurs

Welcome to Predicting Credit Card Fraud with R. In this project-based course, you will learn how to use R to identify fraudulent credit card transactions with a variety of classification methods and use R to generate synthetic samples to address the common problem of classification bias for highly imbalanced datasets—the class of interest (fraud) represents less than 1% of the observations. Class imbalance can make it difficult to detect the effect independent variables have on fraud, ultimately leading to higher misclassification rates. Fixing the imbalance allows the minority class (fraud) to be better learned by the classifier algorithms. After completing the project, you will be able to apply the methods introduced in the project to a wide range of classification problems that typically confront class imbalance, including predicting loan default, customer churn, cancer diagnosis, early high school dropout risk, and malware detection. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Top-Bewertungen

JB

2. Apr. 2021

Very intriguing course and example application. Very informative and practical approaches to addressing imbalances in data. Excellent instructor and great course.

RV

3. Feb. 2021

It is best guided project which helps to learn caret library and this helped me to increase my r programming skills

Filtern nach:

1 - 8 von 8 Bewertungen für Predicting Credit Card Fraud with R

von Vicente C K

3. Mai 2021

von James B

2. Apr. 2021

von RASHIKA D

12. Nov. 2020

von Ramachandra A V

4. Feb. 2021

von Jason M

7. Apr. 2021

von Charles S

9. Dez. 2021

von Gary M

8. Apr. 2021

von kuo j

26. März 2022