Statistical Analysis using Python Numpy

von
Coursera Project Network
In diesem angeleitetes Projekt werden Sie:

Obtain two Numpy arrays from the DataFrame column to represent Female student scores and Male Student scores.

Add the Numpy code to determine the T-value and P-value of the data sets.

Add the function to remove outliers from each set of data, then re-compute the T-value and P-value.

Clock2 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

By the end of this project you will use the statistical capabilities of the Python Numpy package and other packages to find the statistical significance of student test data from two student groups. The T-Test is well known in the field of statistics. It is used to test a hypothesis using a set of data sampled from the population. To perform the T-Test, the population sample size, the mean, or average, of each population, and the standard deviation are all required. These will all be calculated in this project. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

  • Python Statistics
  • Python Programming
  • Statistics T Test
  • Numpy
  • Statitistics Pooled Variance

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Analyze the T-Test problem and use the Python Pandas to read from the CSV into a Data Frame.

  2. Obtain two Numpy arrays from the DataFrame column to represent Female student scores and Male Student scores.

  3. Compute the variance of the two arrays using the standard deviation from each array.

  4. Add the Numpy code to compute the pooled Variance and standard deviation and determine the T-value and P-value of the data sets.

  5. Add a function to remove outliers from each set of data, then re-compute the T-value and P-value.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.